Skip to main content Contents
Prev Up Next \(\usepackage{amsmath,mathabx}
\usepackage{mathpazo}
\normalfont
\def\bp{}
\def\ep{}
\def\R{{\mathbb R}}
\def\Pos{{\mathbb P}}
\def\Q{{\mathbb Q}}
\def\Ir{{\mathbb I}}
\def\N{{\mathbb N}}
\def\Z{{\mathbb Z}}
\def\T{{\mathbb T}}
\def\H{{\mathbb H}}
\def\mb{{\mathcal m}}
\def\Mb{{\mathcal M}}
\def\F{{\mathcal F}}
\def\P{{\mathcal P}}
\def\Qp{{\mathcal Q}}
\def\a{{\alpha}}
\def\d{{\delta}}
\def\eps{{\epsilon}}
\def\e{\varepsilon}
\def\exp{\text{exp }}
\def\g{{\gamma}}
\def\G{{\Gamma}}
\def\k{{\kappa}}
\def\p{{\psi}}
\def\t{{\tau}}
\def\l{{\ell}}
\def\la{{\lambda}}
\def\La{{\Lambda}}
\def\m{{\mu}}
\def\n{{\nu}}
\def\O{{\Omega}}
\def\r{{\rho}}
\def\th{{\theta}}
\def\s{{\sigma}}
\def\ze{{\zeta}}
\def\ph{{\phi}}
\def\Ph{{\Phi}}
\def\Ps{{\Psi}}
\def\U{{\boldsymbol{U}}}
\def\A{{\boldsymbol{A}}}
\def\B{{\boldsymbol{B}}}
\def\C{{\boldsymbol{C}}}
\def\D{{\boldsymbol{D}}}
\def\E{{\boldsymbol{E}}}
\def\J{{\boldsymbol{J}}}
\def\I{{\boldsymbol{I}}}
\def\L{{\boldsymbol{L}}}
\def\Lam{{\boldsymbol{\Lambda}}}
\def\M{{\boldsymbol{M}}}
\def\P{{\boldsymbol{P}}}
\def\X{{\boldsymbol{X}}}
\def\lmatrix{\left(\begin{array}}
\def\rmatrix{\end{array}\right)}
\def\ldmatrix{\left|\begin{array}}
\def\rdmatrix{\end{array}\right|}
\def\bcm{}
\def\pmkn{{(-1)}^{k+n}}
\def\np{{}}
\def\noi{{}}
\def\lmatrix{\left(\begin{array}}
\def\rmatrix{\end{array}\right)}
\def\ldmatrix{\left|\begin{array}}
\def\rdmatrix{\end{array}\right|}
\def\ninN{{n{\in}\N}}
\def\pcp2{\textcolor{forestgreen}\textbf{(CP)}}
\def\pw2{\textcolor{magenta}\textbf{(CW)}}
\newcommand{\chf}[1]{\chi_{{ }_{#1}}(x)}
\def\ok{\textcolor{goodgreen}\textbf{(OK) }}
\def\toinf{{\rightarrow \infty }}
\def\tozero{{\rightarrow 0 }}
\def\supp{{supp}}
\def\Lsp{{\boldsymbol L}}
\def\LtR{{\Lsp^2(\R)}}
\def\Ra{{\,\,\Rightarrow\,\,}}
\def\ra{{\,\rightarrow\,}}
\def\Lfa{{\,\,\Leftarrow\,\,}}
\def\LfRa{{\,\,\Leftrightarrow\,\,}}
\def\lra{{\,\,\longrightarrow\,\,}}
\def\Lra{{\,\,\Longrightarrow\,\,}}
\def\LLa{{\,\,\Longleftarrow\,\,}}
\def\LRa{{\,\,\Longleftrightarrow\,\,}}
\def\fa{{\,\,\forall\,\,}}
\def\ex{{\,\,\exists\,\,}}
\def\st{{\,\,\ni\,\,}}
\def\contr{{(\Rightarrow\,!\,\Leftarrow)}}
\def\ntoinf{{\underset{n\rightarrow\infty}{\lim}\,}}
\def\mtoinf{{\underset{m\rightarrow\infty}{\lim}\,\,}}
\def\and{{\,\,\wedge\,\,}}
\def\oor{{\,\,\vee\,\,}}
\def\blt{$\bullet$}
\def\tcb{\textcolor{blue}}
\newcommand{\ve}[1]{\overrightarrow{\boldsymbol#1}}
\newcommand{\vec}[1]{\overset{\rightharpoonup}{\boldsymbol#1}}
\def\b{\vec{b}}
\def\c{\vec{c}}
\def\d{\vec{d}}
\def\x{\vec{x}}
\def\y{\vec{y}}
\def\z{\vec{z}}
\def\u{\vec{u}}
\def\v{\vec{v}}
\def\w{\vec{w}}
def\z{\vec{z}}
\newcommand{\ip}[2]{{\left\langle #1,#2\right\rangle}}
\newcommand{\dpr}[2]{{#1\,{\boldsymbol \cdot}\,#2}}
\newcommand{\row}[2]{{#1}_{#2\ast}}
\newcommand{\col}[2]{{#1}_{\ast#2}}
\newcommand{\wh}{\widehat}
\newcommand{\wt}{\widetilde}
\def\lmatrix{\left(\begin{array}}
\def\rmatrix{\end{array}\right)}
\def\0matrix{\mathcal{O}}
\newcommand{\unit}[1]{\wh{\boldsymbol{#1}}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 5.3 Vector Spaces: Homework
Exercises Exercises
Exercise Group.
Prove the following sets are vector spaces over \(\R\) under the given operations.
1.
The set of all convergent real sequences under term-wise addition and scalar multiplication.
2.
The set of matrices, \(\R^{m\times n}\text{,}\) under matrix addition and scalar multiplication.
Exercise Group.
Prove that the following sets, \(S\text{,}\) are subspaces of the given vector space, \(V\text{.}\)
3.
\(S=V\text{.}\) (I.e., prove that \(V\) is a subspace of itself)
4.
\(S=\{\vec{0}\}\text{,}\) \(V\text{.}\) (I.e., prove that \(\{\vec{0}\}\) is a subspace of any vector space.)
5.
For any given \(n\in\N,\,S=\mathcal{L}=\left\{L\in\R^{n\times n}\left|\right.
L_{ij}=0\,\text{ if } i\lt j\right\}\) of lower-triangular matrices, \(V=\R^{n\times n}\text{.}\)
6.
For any given \(n\in\N,\,S=\mathcal{U}:=\left\{U\in\R^{n\times n}\left|\right.
U_{ij}=0\,\text{ if } i>j\right\}\) of upper-triangular matrices, \(V=\R^{n\times n}\text{.}\)
7.
\(S=\left\{\left.\left(\begin{array}{c}x\\y\\z \end{array} \right)\right|x+y+z=0\right\}\text{,}\) \(V=\R^3\text{.}\)
8.
\(S=\left\{\left.\left(\begin{array}{c}x\\2x\\z \end{array} \right)\right|x,z\in\R\right\}\text{,}\) \(V=\R^3\text{.}\)
9.
\(S=\left\{\left.\left(\begin{array}{c}x\\y\\2x+3y \end{array} \right)\right|x,y\in\R\right\}\text{,}\) \(V=\R^3\text{.}\)
10.
Let \(A\in\R^{n\times n}\text{.}\) \(S=N(A)=\left\{\left.\vec{x}\right|A\vec{x}=\vec{0}\right\}\text{,}\) \(V=\R^n\text{.}\)
11.
\(S=\left\{\left.\left(\begin{array}{cc}0\amp a\\b\amp 0 \end{array} \right)\right|a,b\in\R\right\}\text{,}\) \(V=\R^{2\times 2}\text{.}\)
Exercise Group.
Prove that the following sets, \(S\text{,}\) are not subspaces of the given vector space, \(V\text{.}\)
12.
\(S=\left\{\left.\left(\begin{array}{c}x^2\\x \end{array} \right)\right|x\in\R\right\}\text{,}\) \(V=\R^2\text{.}\)
13.
\(S=\left\{\left.\left(\begin{array}{c}x^3\\x^4 \end{array} \right)\right|x\in\R\right\}\text{,}\) \(V=\R^2\text{.}\)
14.
\(S=\left\{\left.\left(\begin{array}{c}x\\y\\z \end{array} \right)\right|xyz=0\right\}\text{,}\) \(V=\R^3\text{.}\)
15.
\(S=\left\{\left.\left(\begin{array}{c}x\\y\\z \end{array} \right)\right|x,y,z\in\R,\,y\ge z\right\}\text{,}\) \(V=\R^3\text{.}\)
16.
\(S=\left\{\left.\left(\begin{array}{c}x\\y\\z \end{array} \right)\right|x\ne0\in\R\right\}\text{,}\) \(V=\R^3\text{.}\)
17.
\(S=\left\{A\in\R^{3\times 3}|\det(A)>1\right\}\text{,}\) \(V=\R^{3\times 3}\text{.}\)
18.
\(S=SL_2(\R):=\left\{A\in\R^{2\times 2}\,|\,ad-bc=1\right\}\text{,}\) \(V=\R^{2\times 2}\text{.}\)
19. Prove Theorem 5.1.29 .20. Prove Theorem 5.1.30 .21. Prove Theorem 5.1.32 .22. Prove Theorem 5.1.33 .23.
24. Prove Theorem 5.1.35 .25. Prove Theorem 5.1.36 .26. Prove Theorem 5.1.37 .
Exercise Group.
27.
Prove that the set of second-degree polynomials defined on the closed interval \([-1,1]\) is a vector space.
28.
Let \(V\) be the set of second-degree polynomials defined on \([-1,1].\) Prove that \(\ip{p(x)}{q(x)}:=\displaystyle{\int_{-1}^1p(x)q(x)\,dx}\) is indeed an inner product on \(V\) and state the induced norm on \(V.\)