Skip to main content

Section 3.14 The LU-Factorization: In-Class Practice

Worksheet 3.14.1 Worksheet

Exercise Group.

Remark 3.13.14 gives us an easy way to compute \(\E_{(a)21}\E_{(b)31}\E_{(c)32}\in\R^{3 \times 3}.\) Here we will investigate the extents and limitations of that shortcut. Compute each of the following (break up the work amongst your group members). Which products follow the rule described in Remark 3.13.14? Do you see a pattern?
1.
\(\E_{(a)21}\E_{(b)31}\E_{(c)32}\)
2.
\(\E_{(b)31}\E_{(a)21}\E_{(c)32}\)
3.
\(\E_{(b)31}\E_{(c)32}\E_{(a)21}\)
4.
\(\E_{(a)21}\E_{(c)32}\E_{(b)31}\)
5.
\(\E_{(a)21}\E_{(c)32}\E_{(b)31}\)
6.
\(\E_{(c)32}\E_{(a)21}\E_{(b)31}\)

Exercise Group.

For each matrix \(\A\) in the \(\L\U\)-factorization of \(\A\) by 1) using Theorem 3.13.9 and 2) then Algorithm 3.13.13, then factor \(\A\) as \(\A=\L\D\widetilde{\U}.\)
7.
\(\A=\left(\begin{array}{rrr}5\amp 1\amp -2\\-30\amp 0\amp 10\\15\amp -21\amp 11 \end{array} \right)\)
8.
\(\A=\left(\begin{array}{rrr}2\amp 2\amp -3\\8\amp 3\amp -15\\-6\amp -31\amp 2\end{array} \right).\)
9.
\(\A=\left(\begin{array}{rrr}4\amp 2\amp -6\\-4\amp 5\amp 20\\8\amp -52\amp -103\end{array} \right).\)
10.
\(\A=\left(\begin{array}{rrr}4\amp 3\amp -4\\12\amp 7\amp -5\\20\amp 19\amp -34\end{array} \right).\)