Skip to main content Contents
Prev Up Next \(\usepackage{amsmath,mathabx}
\usepackage{mathpazo}
\normalfont
\def\bp{}
\def\ep{}
\def\R{{\mathbb R}}
\def\Pos{{\mathbb P}}
\def\Q{{\mathbb Q}}
\def\Ir{{\mathbb I}}
\def\N{{\mathbb N}}
\def\Z{{\mathbb Z}}
\def\T{{\mathbb T}}
\def\H{{\mathbb H}}
\def\mb{{\mathcal m}}
\def\Mb{{\mathcal M}}
\def\F{{\mathcal F}}
\def\P{{\mathcal P}}
\def\Qp{{\mathcal Q}}
\def\a{{\alpha}}
\def\d{{\delta}}
\def\eps{{\epsilon}}
\def\e{\varepsilon}
\def\exp{\text{exp }}
\def\g{{\gamma}}
\def\G{{\Gamma}}
\def\k{{\kappa}}
\def\p{{\psi}}
\def\t{{\tau}}
\def\l{{\ell}}
\def\la{{\lambda}}
\def\La{{\Lambda}}
\def\m{{\mu}}
\def\n{{\nu}}
\def\O{{\Omega}}
\def\r{{\rho}}
\def\th{{\theta}}
\def\s{{\sigma}}
\def\ze{{\zeta}}
\def\ph{{\phi}}
\def\Ph{{\Phi}}
\def\Ps{{\Psi}}
\def\U{{\boldsymbol{U}}}
\def\A{{\boldsymbol{A}}}
\def\B{{\boldsymbol{B}}}
\def\C{{\boldsymbol{C}}}
\def\D{{\boldsymbol{D}}}
\def\E{{\boldsymbol{E}}}
\def\J{{\boldsymbol{J}}}
\def\I{{\boldsymbol{I}}}
\def\L{{\boldsymbol{L}}}
\def\Lam{{\boldsymbol{\Lambda}}}
\def\M{{\boldsymbol{M}}}
\def\P{{\boldsymbol{P}}}
\def\X{{\boldsymbol{X}}}
\def\lmatrix{\left(\begin{array}}
\def\rmatrix{\end{array}\right)}
\def\ldmatrix{\left|\begin{array}}
\def\rdmatrix{\end{array}\right|}
\def\bcm{}
\def\pmkn{{(-1)}^{k+n}}
\def\np{{}}
\def\noi{{}}
\def\lmatrix{\left(\begin{array}}
\def\rmatrix{\end{array}\right)}
\def\ldmatrix{\left|\begin{array}}
\def\rdmatrix{\end{array}\right|}
\def\ninN{{n{\in}\N}}
\def\pcp2{\textcolor{forestgreen}\textbf{(CP)}}
\def\pw2{\textcolor{magenta}\textbf{(CW)}}
\newcommand{\chf}[1]{\chi_{{ }_{#1}}(x)}
\def\ok{\textcolor{goodgreen}\textbf{(OK) }}
\def\toinf{{\rightarrow \infty }}
\def\tozero{{\rightarrow 0 }}
\def\supp{{supp}}
\def\Lsp{{\boldsymbol L}}
\def\LtR{{\Lsp^2(\R)}}
\def\Ra{{\,\,\Rightarrow\,\,}}
\def\ra{{\,\rightarrow\,}}
\def\Lfa{{\,\,\Leftarrow\,\,}}
\def\LfRa{{\,\,\Leftrightarrow\,\,}}
\def\lra{{\,\,\longrightarrow\,\,}}
\def\Lra{{\,\,\Longrightarrow\,\,}}
\def\LLa{{\,\,\Longleftarrow\,\,}}
\def\LRa{{\,\,\Longleftrightarrow\,\,}}
\def\fa{{\,\,\forall\,\,}}
\def\ex{{\,\,\exists\,\,}}
\def\st{{\,\,\ni\,\,}}
\def\contr{{(\Rightarrow\,!\,\Leftarrow)}}
\def\ntoinf{{\underset{n\rightarrow\infty}{\lim}\,}}
\def\mtoinf{{\underset{m\rightarrow\infty}{\lim}\,\,}}
\def\and{{\,\,\wedge\,\,}}
\def\oor{{\,\,\vee\,\,}}
\def\blt{$\bullet$}
\def\tcb{\textcolor{blue}}
\newcommand{\ve}[1]{\overrightarrow{\boldsymbol#1}}
\newcommand{\vec}[1]{\overset{\rightharpoonup}{\boldsymbol#1}}
\def\b{\vec{b}}
\def\c{\vec{c}}
\def\d{\vec{d}}
\def\x{\vec{x}}
\def\y{\vec{y}}
\def\z{\vec{z}}
\def\u{\vec{u}}
\def\v{\vec{v}}
\def\w{\vec{w}}
def\z{\vec{z}}
\newcommand{\ip}[2]{{\left\langle #1,#2\right\rangle}}
\newcommand{\dpr}[2]{{#1\,{\boldsymbol \cdot}\,#2}}
\newcommand{\row}[2]{{#1}_{#2\ast}}
\newcommand{\col}[2]{{#1}_{\ast#2}}
\newcommand{\wh}{\widehat}
\newcommand{\wt}{\widetilde}
\def\lmatrix{\left(\begin{array}}
\def\rmatrix{\end{array}\right)}
\def\0matrix{\mathcal{O}}
\newcommand{\unit}[1]{\wh{\boldsymbol{#1}}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 4.2 Determinant Fundamentals: In-Class Practice
Worksheet 4.2.1 Worksheet
Use the formula in
Theorem 4.1.2 to find the determinant of the following matrices.
\(\displaystyle A=\lmatrix{rr} -1 \amp 4\\ 2 \amp -3\rmatrix\)
\(\displaystyle B=\lmatrix{rr} 4 \amp -2\\ 6 \amp -1\rmatrix\)
\(\displaystyle C=\lmatrix{rr} 1 \amp 2\\ 3 \amp 6\rmatrix\)
Multiply to find the matrix \(D=AB\text{.}\) Then find \(\det(D)\text{.}\) Do you notice a relationship to \(\det(A)\) and \(\det(B)\text{?}\)
Find the determinant for each matrix \(A\text{.}\)
\(\displaystyle A=\lmatrix{rrr} 7 \amp 0 \amp -3 \\ -5 \amp 1 \amp 8\\ 2 \amp -2 \amp 1 \rmatrix\)
\(\displaystyle A=\lmatrix{rrr}5 \amp 0 \amp 2\\-1 \amp 3 \amp -1\\2 \amp 4 \amp 0\rmatrix\)
\(\displaystyle A=\lmatrix{rrr}3 \amp 1 \amp 2\\0 \amp -1 \amp 2\\0 \amp 0 \amp 1\rmatrix\)
\(\displaystyle A=\lmatrix{rrr}1 \amp 2 \amp 3\\0 \amp 3 \amp -1\\2 \amp 4 \amp 6\rmatrix\)
Let
\(P\) be a permutation matrix (see
Definition 3.7.11 . Show that
\(\det(P)=\pm 1\)
Suppose \(A \in \R^{n \times n}\) is a matrix so that \(\det(A)=2\text{.}\) Let \(B=3A.\) Find \(\det(B)\) when
\(\displaystyle n=2\)
\(\displaystyle n=3\)
\(\displaystyle n=k\)
Without doing any computations show that the determinant of matrix
\(B\) in
Problem 2.d is zero. (Hint: Also use
Theorem 4.4.2 .)
Let \(A=\lmatrix{rrr} 3 \amp 2 \amp 5\\9 \amp 4 \amp 10\\ 6 \amp 2 \amp 12 \rmatrix.\)
Find \(\det(A).\)
Find \(\det(A^{T})\)
What relationship do you notice about \(\det(A)\) and \(\det(A^{T})\text{?}\)
Use elimination to reduce \(A\) to a matrix \(U\) in row-echelon form. Then find \(\det(U)\text{.}\)
What relationship do you notice about \(\det(A)\) and \(\det(U)\text{?}\)
Use formulas from this section to find the determinant of \(A\)
\(\displaystyle A=\lmatrix{rrrr} 1 \amp 2 \amp -1 \amp 0 \\3 \amp 5 \amp 2 \amp 3\\
-5 \amp -4 \amp 1 \amp 0\\
7 \amp -2 \amp 5 \amp -6 \rmatrix\)
\(A=\lmatrix{rrrr} -5 \amp 0 \amp 0 \amp 0\\ 0 \amp 4 \amp 0 \amp 0 \\ 0 \amp 0 \amp -2 \amp 0 \\ 0 \amp 0 \amp 0 \amp -1 \rmatrix\text{.}\)
Find a shortcut for computing the determinant in the last part and use it to find the determinant of \(A=\lmatrix{rrrrr}8 \amp 0 \amp 0 \amp 0 \amp 0\\ 0 \amp -1 \amp 0 \amp 0\amp 0\\ 0 \amp 0 \amp 5 \amp 0 \amp 0\\0 \amp 0 \amp 0 \amp 1 \amp 0 \\ 0 \amp 0 \amp 0 \amp 0 \amp 2 \rmatrix\)