Skip to main content

Section 5.5 Linear Independence, Span and Basis: In-Class Practice

Worksheet 5.5.1 Worksheet

Exercise Group.

Determine whether each of the following sets of vectors are linearly independent. Explain how you know (cite a theorem or definition).
5.
\(S=\left\{ \lmatrix{c} 3 \\1 \rmatrix, \lmatrix{r} -5 \\7 \rmatrix \right\}\)
6.
\(S=\left\{ \lmatrix{c} 4 \\ 12 \rmatrix, \lmatrix{c} 6 \\ 18 \rmatrix \right\}\)
7.
\(S=\left\{ \lmatrix{r} -1 \\ 2 \\ -5 \rmatrix, \lmatrix{r} 3 \\ 1 \\1 \rmatrix, \lmatrix{r} 2 \\ -1 \\ 6 \rmatrix \right\}\)
8.
\(S=\left\{ \lmatrix{r} 2 \\ -6 \\ 4 \rmatrix, \lmatrix{r} 4 \\ -12 \\ 7 \rmatrix, \lmatrix{r}0\\ 18 \\ -2 \rmatrix, \lmatrix{r} 1 \\ 0 \\ 3 \rmatrix \right\}\)

Exercise Group.

In Remark 5.4.27 it is claimed that the set \(S=\left\{\lmatrix{r}1\\1\rmatrix ,\,\lmatrix{r}1\\-1\rmatrix\right\}\) is a basis for \(V=\R^2\text{.}\)
9.
Show that the vectors in \(S\) are linearly independent.
10.
Show \(\lmatrix{r} 4 \\-2\rmatrix \in \R^2\) is in the span of \(S\text{.}\) That is, find \(a\) and \(b\) so that \(a\begin{pmatrix}1\\1 \end{pmatrix} +b\lmatrix{r}1\\-1\rmatrix = \lmatrix{r}4\\-2\rmatrix\text{.}\)
11.
Let \(A=\lmatrix{rr}1 \amp 1 \\ 1 \amp -1 \rmatrix.\) Find \(A^{-1}\text{.}\)
12.
Find \(\begin{pmatrix} a \\b \end{pmatrix} = A^{-1} \lmatrix{r}4\\-2\rmatrix\text{.}\) Does this match the answer you got in Part 5.5.1.10 ? Explain why that makes sense.
13.
Explain how you know \(S\) spans \(\R^2\) thus completing the proof that \(S\) is a basis for \(R^2\text{.}\) In other words, given \(\begin{pmatrix} x \\ y \end{pmatrix} \in \R^2\) explain how to find \(a\) and \(b\) so that \(a\begin{pmatrix}1\\1 \end{pmatrix} +b\lmatrix{r}1\\-1\rmatrix = \begin{pmatrix} x \\ y \end{pmatrix}\text{.}\)

14.

Determine if \(\vec{v}=\lmatrix{r} -1\\-8\\10\rmatrix\) is in the span of the set of vectors \(S=\left\{ \lmatrix{r}-1\\0\\2\rmatrix, \lmatrix{c}1\\2\\0\rmatrix, \lmatrix{r}1\\-1\\1\rmatrix\right\}\text{.}\)

15.

Construct a set of vectors in \(\R^3\) that is linearly independent but not a basis for \(\R^3\text{.}\) Explain / justify your claim.

16.

Construct a set of vectors in \(\R^3\) that spans \(\R^3\) but is not a basis for \(\R^3\text{.}\) Explain / justify your claim.

17.

Find a basis \(\mathcal{A}\) for \(\R^2\) other than the one in Problem 5.5.1.9–13 or \(\left\{\left(\begin{array}{r}\pm1\\0 \end{array} \right),\left(\begin{array}{r}0\\\pm1 \end{array} \right)\right\}\) and prove that \(\mathcal{A}\) is a basis.