Skip to main content Contents
Prev Up Next \(\usepackage{amsmath,mathabx}
\usepackage{mathpazo}
\normalfont
\def\bp{}
\def\ep{}
\def\R{{\mathbb R}}
\def\Pos{{\mathbb P}}
\def\Q{{\mathbb Q}}
\def\Ir{{\mathbb I}}
\def\N{{\mathbb N}}
\def\Z{{\mathbb Z}}
\def\T{{\mathbb T}}
\def\H{{\mathbb H}}
\def\mb{{\mathcal m}}
\def\Mb{{\mathcal M}}
\def\F{{\mathcal F}}
\def\P{{\mathcal P}}
\def\Qp{{\mathcal Q}}
\def\a{{\alpha}}
\def\d{{\delta}}
\def\eps{{\epsilon}}
\def\e{\varepsilon}
\def\exp{\text{exp }}
\def\g{{\gamma}}
\def\G{{\Gamma}}
\def\k{{\kappa}}
\def\p{{\psi}}
\def\t{{\tau}}
\def\l{{\ell}}
\def\la{{\lambda}}
\def\La{{\Lambda}}
\def\m{{\mu}}
\def\n{{\nu}}
\def\O{{\Omega}}
\def\r{{\rho}}
\def\th{{\theta}}
\def\s{{\sigma}}
\def\ze{{\zeta}}
\def\ph{{\phi}}
\def\Ph{{\Phi}}
\def\Ps{{\Psi}}
\def\U{{\boldsymbol{U}}}
\def\A{{\boldsymbol{A}}}
\def\B{{\boldsymbol{B}}}
\def\C{{\boldsymbol{C}}}
\def\D{{\boldsymbol{D}}}
\def\E{{\boldsymbol{E}}}
\def\J{{\boldsymbol{J}}}
\def\I{{\boldsymbol{I}}}
\def\L{{\boldsymbol{L}}}
\def\Lam{{\boldsymbol{\Lambda}}}
\def\M{{\boldsymbol{M}}}
\def\P{{\boldsymbol{P}}}
\def\X{{\boldsymbol{X}}}
\def\lmatrix{\left(\begin{array}}
\def\rmatrix{\end{array}\right)}
\def\ldmatrix{\left|\begin{array}}
\def\rdmatrix{\end{array}\right|}
\def\bcm{}
\def\pmkn{{(-1)}^{k+n}}
\def\np{{}}
\def\noi{{}}
\def\lmatrix{\left(\begin{array}}
\def\rmatrix{\end{array}\right)}
\def\ldmatrix{\left|\begin{array}}
\def\rdmatrix{\end{array}\right|}
\def\ninN{{n{\in}\N}}
\def\pcp2{\textcolor{forestgreen}\textbf{(CP)}}
\def\pw2{\textcolor{magenta}\textbf{(CW)}}
\newcommand{\chf}[1]{\chi_{{ }_{#1}}(x)}
\def\ok{\textcolor{goodgreen}\textbf{(OK) }}
\def\toinf{{\rightarrow \infty }}
\def\tozero{{\rightarrow 0 }}
\def\supp{{supp}}
\def\Lsp{{\boldsymbol L}}
\def\LtR{{\Lsp^2(\R)}}
\def\Ra{{\,\,\Rightarrow\,\,}}
\def\ra{{\,\rightarrow\,}}
\def\Lfa{{\,\,\Leftarrow\,\,}}
\def\LfRa{{\,\,\Leftrightarrow\,\,}}
\def\lra{{\,\,\longrightarrow\,\,}}
\def\Lra{{\,\,\Longrightarrow\,\,}}
\def\LLa{{\,\,\Longleftarrow\,\,}}
\def\LRa{{\,\,\Longleftrightarrow\,\,}}
\def\fa{{\,\,\forall\,\,}}
\def\ex{{\,\,\exists\,\,}}
\def\st{{\,\,\ni\,\,}}
\def\contr{{(\Rightarrow\,!\,\Leftarrow)}}
\def\ntoinf{{\underset{n\rightarrow\infty}{\lim}\,}}
\def\mtoinf{{\underset{m\rightarrow\infty}{\lim}\,\,}}
\def\and{{\,\,\wedge\,\,}}
\def\oor{{\,\,\vee\,\,}}
\def\blt{$\bullet$}
\def\tcb{\textcolor{blue}}
\newcommand{\ve}[1]{\overrightarrow{\boldsymbol#1}}
\newcommand{\vec}[1]{\overset{\rightharpoonup}{\boldsymbol#1}}
\def\b{\vec{b}}
\def\c{\vec{c}}
\def\d{\vec{d}}
\def\x{\vec{x}}
\def\y{\vec{y}}
\def\z{\vec{z}}
\def\u{\vec{u}}
\def\v{\vec{v}}
\def\w{\vec{w}}
def\z{\vec{z}}
\newcommand{\ip}[2]{{\left\langle #1,#2\right\rangle}}
\newcommand{\dpr}[2]{{#1\,{\boldsymbol \cdot}\,#2}}
\newcommand{\row}[2]{{#1}_{#2\ast}}
\newcommand{\col}[2]{{#1}_{\ast#2}}
\newcommand{\wh}{\widehat}
\newcommand{\wt}{\widetilde}
\def\lmatrix{\left(\begin{array}}
\def\rmatrix{\end{array}\right)}
\def\0matrix{\mathcal{O}}
\newcommand{\unit}[1]{\wh{\boldsymbol{#1}}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 2.4 Vector Properties
Definition 2.4.1 . The dot product of two vectors.
Let \(\u,\v\in\R^n.\) Then the dot product or inner product of \(\u\) with \(\v,\) is
\begin{equation*}
\dpr{\u}{\v}:=\sum_{i=1}^nu_iv_i= u_1v_1+u_2v_2+\cdots+u_nv_n.
\end{equation*}
Theorem 2.4.2 . Properties of the dot product.
Let \(\u,\v,\w\in\R^n,\) and \(a,b\in\R.\) The dot product satisfies the following properties.
\begin{align}
\|\v\|^2\amp =\dpr{\v}{\v}\tag{2.4.1}\\
\dpr{\u}{\v}\amp =\dpr{\v}{\u}\amp \text{ (commutativity) }\tag{2.4.2}\\
a(\dpr{\u}{\v})\amp =\dpr{a\u}{\v} = \dpr{\u}{a\v}\tag{2.4.3}\\
\dpr{(a\u+b\v)}{\w}\amp =\dpr{a\u}{\w}+\dpr{b\v}{\w}\amp \text{ (linearity) }\tag{2.4.4}
\end{align}
Proof. The proof is left an as exercise.
Theorem 2.4.3 . The dot product by norms and the cosine.
For nonzero vectors \(\u,\v\in\R^n,\) we have
\begin{equation}
\dpr{\u}{\v}=\|\u\|\,\|\v\|\cos\th\text{,}\tag{2.4.5}
\end{equation}
where \(\th\in[0,\pi],\) is the angle between \(\u,\) and \(\v.\) Proof.
\begin{align*}
\|\u-\v\|^2=\,\,\amp \|\u\|^2+\|\v\|^2-2\|\u\|\|\v\|\cos\theta.
\end{align*}
Figure 2.4.4. Using the Law of Cosines in Theorem 2.4.3
\begin{equation}
\|\u-\v\|^2=\dpr{(\u-\v)}{(\u-\v)}\,=\,\|\u\|^2+\|\v\|^2-2\dpr{\u}{\v}.\tag{2.4.6}
\end{equation}
Definition 2.4.5 . The angle between two nonzero vectors.
The geometric notion of the angle \(\th\in[0,\pi],\) between two nonzero vectors in \(\R^2\) or \(\R^3,\) is intuitive. Whether in \(\R^2,\,\R^3\) or \(\R^n,\) we define the angle \(\th\in[0,\pi]\) between two nonzero vectors by
\begin{equation*}
\theta=\cos^{-1}\left(\frac{\dpr{\u}{\v}}{\|\u\|\,\|\v\|}\right),
\end{equation*}
the result of solving (2.4.5) for \(\theta.\) There is no angle defined between the vector \(\vec{0}\) and any other vector since \(\vec{0}\) does not lie on a unique ray emanating from \(\mathcal{O}.\)
Definition 2.4.6 . Orthogonality.
Two vectors \(\u,\v\in\R^n\) are orthogonal if \(\dpr{\u}{\v}=0.\) In this case we write \(\u\perp\v.\)
Definition 2.4.7 . Perpendicularity.
Two nonzero vectors \(\u,\v\in\R^2\) or \(\R^3\) are perpendicular if \(\dpr{\u}{\v}=0.\) In this case we write \(\u\perp\v.\)
Theorem 2.4.8 . The angles between parallel, antiparallel, and nonzero orthogonal vectors.
Let \(\u,\v\in\R^n\setminus\left\{\vec{0}\right\}\) and denote the angle between \(\u\) and \(\v\) by \(\theta.\) Then
\(\qquad\qquad\qquad\qquad\displaystyle{\theta=\frac{\pi}{2}}\,\,\Longleftrightarrow\,\,\u\perp\v,\)
\(\qquad\qquad\qquad\qquad\theta=0\,\,\Longleftrightarrow\,\,\u\parallel\v,\,\) and
\(\qquad\qquad\qquad\qquad\theta=\pi\,\,\Longleftrightarrow\,\,\u\upharpoonleft\!\downharpoonright\v.\)
Proof. The proof is left an as exercise.
Theorem 2.4.9 . Parallelity and antiparallelity via the dot product.
Let \(\u,\v\in\R^n\setminus\left\{\vec{0}\right\}.\) Then
\(\qquad\qquad\qquad\qquad\u\parallel\v\,\,\Longleftrightarrow\,\,\dpr{\u}{\v}=\|\u\|\,\|\v\|,\) and
\(\qquad\qquad\qquad\qquad\u\upharpoonleft\!\downharpoonright\v\,\,\Longleftrightarrow\,\,\dpr{\u}{\v}=-\|\u\|\,\|\v\|.\)
Proof. The proof is left an as exercise.
Theorem 2.4.10 . Characterizing \(\boldsymbol{\vec{0}}\) by the dot product.
Let \(\u\in\R^n.\) Then \(\u=\vec{0}\) if and only if for all \(\v\in\R^n\) we have \(\dpr{\u}{\v}=0.\) Proof. The proof is left as a homework exercise.
Definition 2.4.11 . Orthogonal sets.
Let \(n\in\N,\) fix \(k\le n,\) and let \(\boldsymbol{\Phi}=\{\v_1,\,\v_2,\,\ldots,\,\v_k\},\) be a set of vectors in \(\R^n.\) We say that \(\boldsymbol{\Phi}\) is an orthogonal set or more simply that \(\boldsymbol{\Phi}\,\) is orthogonal, if \(i\ne j\,\,\Rightarrow\,\,\v_i\perp\v_j.\) The vectors in an orthogonal set are said to be mutually orthogonal.
Theorem 2.4.12 . General Pythagorean Theorem on \(\boldsymbol{\R^n}\) .
Let \(n\in\N,\) fix \(k\le n,\) and let \(\boldsymbol{\Phi}=\left\{\boldsymbol{v_1},\boldsymbol{v_2},\ldots,\boldsymbol{v_k}\right\}\) be orthogonal in \(\R^n.\) Then
\begin{equation*}
\left\|\boldsymbol{v_1}+\boldsymbol{v_2}+\cdots+\boldsymbol{v_k}\right\|^2=\left\|\boldsymbol{v_1}\right\|^2+\left\|\boldsymbol{v_2}\right\|^2+\cdots+\left\|\boldsymbol{v_k}\right\|^2.
\end{equation*}
Proof. Let \(n\in\N,\) fix \(k\le n,\) and suppose \(\boldsymbol{\Phi}=\left\{\boldsymbol{v_1},\boldsymbol{v_2},\ldots,\boldsymbol{v_k}\right\}\) is orthogonal in \(\R^n.\) Then
\begin{align*}
\left\|\sum_{i=1}^k\boldsymbol{v_i}\right\|^2=\amp \dpr{\left(\sum_{i=1}^k\boldsymbol{v_i}\right)}{\left(\sum_{j=1}^k\boldsymbol{v_j}\right)}\,=\,\sum_{i=1}^k\sum_{j=1}^k\left(\dpr{\boldsymbol{v_i}}{\boldsymbol{v_j}}\right)\\
=\amp\,\sum_{i=1}^k\left(\dpr{\boldsymbol{v_i}}{\boldsymbol{v_i}}\right)\,=\,\sum_{i=1}^k\left\|\boldsymbol{v_i}\right\|^2.
\end{align*}
Definition 2.4.13 . Orthonormal vectors and orthonormal sets.
If \(\u,\,\v,\) are orthogonal unit vectors, then we say \(\u,\v\) are orthonormal vectors. A set \(\boldsymbol{\Phi}\) is called orthonormal if it contains only mutually orthogonal unit vectors.
Theorem 2.4.14 . The Cauchy-Schwarz inequality.
Let \(\u,\v\in\R^n.\) Then
\begin{equation*}
\left|\dpr{\u}{\v}\right|\le\|\u\|\,\|\v\|.
\end{equation*}
Proof. The proof is left an as exercise.
Theorem 2.4.15 . The triangle inequality.
Let \(\u,\v\in\R^n.\) Then
\begin{equation*}
\|\u+\v\|\le\|\u\|+\|\v\|.
\end{equation*}
Proof.
Let \(\u,\v\in\R^n.\) We will prove
\begin{equation}
\|\u+\v\|^2\le\left(\|\u\|+\|\v\|\right)^2\tag{2.4.7}
\end{equation}
first, and then take the square root of both sides. The LHS of
(2.4.7) is
\begin{align*}
\|\u+\v\|^2=\amp\,\,\sum_{i=1}^n(u_i+v_i)^2\amp \amp \text{by }\knowl{./knowl/xref/x2norm.html}{\text{Def. 2.1.20}}\\
=\amp\,\,\sum_{i=1}^n\left(u_i^2+2u_iv_i+v_i^2\right)\amp \amp \text{by basic algebra }\\
=\amp\,\,\sum_{i=1}^nu_i^2+2\sum_{i=1}^nu_iv_i+\sum_{i=1}^nv_i^2\amp \amp \text{by basic algebra }\\
=\amp\,\,\|\u\|^2+2\u\cdot\v+\|\v\|^2\amp \amp\text{by }\knowl{./knowl/xref/x2norm.html}{\text{Def. 2.1.20}}\text{ and }\knowl{./knowl/xref/dotprod.html}{\text{Def. 2.4.1}}\\
\le\amp\,\,\|\u\|^2+2\|\u\|\|\v\|+\|\v\|^2\amp \amp\text{by }\knowl{./knowl/xref/Cauchy-Schwarz.html}{\text{Thm. 2.4.14}}\\
=\amp\,\,\left(\|\u\|+\|\v\|\right)^2\amp \amp\text{by basic algebra }
\end{align*}
which is the RHS of
(2.4.7) , so
(2.4.7) is proved. Taking the square root of both sides of
(2.4.7) yields the triangle inequality
\(\|\u+\v\|\le\|\u\|+\|\v\|;\) the direction of the inequality is preserved because the square root function is an increasing function.