Skip to main content\(\usepackage{amsmath,mathabx}
\usepackage{mathpazo}
\normalfont
\def\bp{}
\def\ep{}
\def\R{{\mathbb R}}
\def\Pos{{\mathbb P}}
\def\Q{{\mathbb Q}}
\def\Ir{{\mathbb I}}
\def\N{{\mathbb N}}
\def\Z{{\mathbb Z}}
\def\T{{\mathbb T}}
\def\H{{\mathbb H}}
\def\mb{{\mathcal m}}
\def\Mb{{\mathcal M}}
\def\F{{\mathcal F}}
\def\P{{\mathcal P}}
\def\Qp{{\mathcal Q}}
\def\a{{\alpha}}
\def\d{{\delta}}
\def\eps{{\epsilon}}
\def\e{\varepsilon}
\def\exp{\text{exp }}
\def\g{{\gamma}}
\def\G{{\Gamma}}
\def\k{{\kappa}}
\def\p{{\psi}}
\def\t{{\tau}}
\def\l{{\ell}}
\def\la{{\lambda}}
\def\La{{\Lambda}}
\def\m{{\mu}}
\def\n{{\nu}}
\def\O{{\Omega}}
\def\r{{\rho}}
\def\th{{\theta}}
\def\s{{\sigma}}
\def\ze{{\zeta}}
\def\ph{{\phi}}
\def\Ph{{\Phi}}
\def\Ps{{\Psi}}
\def\U{{\boldsymbol{U}}}
\def\A{{\boldsymbol{A}}}
\def\B{{\boldsymbol{B}}}
\def\C{{\boldsymbol{C}}}
\def\D{{\boldsymbol{D}}}
\def\E{{\boldsymbol{E}}}
\def\J{{\boldsymbol{J}}}
\def\I{{\boldsymbol{I}}}
\def\L{{\boldsymbol{L}}}
\def\Lam{{\boldsymbol{\Lambda}}}
\def\M{{\boldsymbol{M}}}
\def\P{{\boldsymbol{P}}}
\def\X{{\boldsymbol{X}}}
\def\lmatrix{\left(\begin{array}}
\def\rmatrix{\end{array}\right)}
\def\ldmatrix{\left|\begin{array}}
\def\rdmatrix{\end{array}\right|}
\def\bcm{}
\def\pmkn{{(-1)}^{k+n}}
\def\np{{}}
\def\noi{{}}
\def\lmatrix{\left(\begin{array}}
\def\rmatrix{\end{array}\right)}
\def\ldmatrix{\left|\begin{array}}
\def\rdmatrix{\end{array}\right|}
\def\ninN{{n{\in}\N}}
\def\pcp2{\textcolor{forestgreen}\textbf{(CP)}}
\def\pw2{\textcolor{magenta}\textbf{(CW)}}
\newcommand{\chf}[1]{\chi_{{ }_{#1}}(x)}
\def\ok{\textcolor{goodgreen}\textbf{(OK) }}
\def\toinf{{\rightarrow \infty }}
\def\tozero{{\rightarrow 0 }}
\def\supp{{supp}}
\def\Lsp{{\boldsymbol L}}
\def\LtR{{\Lsp^2(\R)}}
\def\Ra{{\,\,\Rightarrow\,\,}}
\def\ra{{\,\rightarrow\,}}
\def\Lfa{{\,\,\Leftarrow\,\,}}
\def\LfRa{{\,\,\Leftrightarrow\,\,}}
\def\lra{{\,\,\longrightarrow\,\,}}
\def\Lra{{\,\,\Longrightarrow\,\,}}
\def\LLa{{\,\,\Longleftarrow\,\,}}
\def\LRa{{\,\,\Longleftrightarrow\,\,}}
\def\fa{{\,\,\forall\,\,}}
\def\ex{{\,\,\exists\,\,}}
\def\st{{\,\,\ni\,\,}}
\def\contr{{(\Rightarrow\,!\,\Leftarrow)}}
\def\ntoinf{{\underset{n\rightarrow\infty}{\lim}\,}}
\def\mtoinf{{\underset{m\rightarrow\infty}{\lim}\,\,}}
\def\and{{\,\,\wedge\,\,}}
\def\oor{{\,\,\vee\,\,}}
\def\blt{$\bullet$}
\def\tcb{\textcolor{blue}}
\newcommand{\ve}[1]{\overrightarrow{\boldsymbol#1}}
\newcommand{\vec}[1]{\overset{\rightharpoonup}{\boldsymbol#1}}
\def\b{\vec{b}}
\def\c{\vec{c}}
\def\d{\vec{d}}
\def\x{\vec{x}}
\def\y{\vec{y}}
\def\z{\vec{z}}
\def\u{\vec{u}}
\def\v{\vec{v}}
\def\w{\vec{w}}
def\z{\vec{z}}
\newcommand{\ip}[2]{{\left\langle #1,#2\right\rangle}}
\newcommand{\dpr}[2]{{#1\,{\boldsymbol \cdot}\,#2}}
\newcommand{\row}[2]{{#1}_{#2\ast}}
\newcommand{\col}[2]{{#1}_{\ast#2}}
\newcommand{\wh}{\widehat}
\newcommand{\wt}{\widetilde}
\def\lmatrix{\left(\begin{array}}
\def\rmatrix{\end{array}\right)}
\def\0matrix{\mathcal{O}}
\newcommand{\unit}[1]{\wh{\boldsymbol{#1}}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 6.2 Nullspaces, Row and Column Spaces: In-Class Practice
Worksheet 6.2.1 Worksheet
Exercise Group.
For each of the following matrices:
Find a basis for \(N(A)\) (if possible; if not indicate why)
Give the dimension of \(N(A)\)
Write \(N(A)\) in element-form notation
Find a basis for row\((A)\)
Give the dimension of row\((A)\)
Write row\((A)\) in element-form notation
Find a basis for col\((A)\)
Give the dimension of col\((A)\)
Write col\((A)\) in element-form notation
Give the rank of \(A\)
1.
\(\A=\left(\begin{array}{rrr}6\amp -2\amp 3\\4\amp -1\amp 7 \end{array} \right)\)2.
\(\A=\left(\begin{array}{rrrr}1\amp -4\amp 3\amp 5\\4\amp -15\amp 0\amp 7 \end{array} \right)\)3.
\(\A=\left(\begin{array}{rr}5\amp 2 \end{array} \right)\)4.
\(\A=\left(\begin{array}{r}4\\5\\-2 \end{array} \right)\)5.
\(\A=\left(\begin{array}{rrr}5\amp 2\amp 0\\15\amp 6\amp 9\\-10\amp -4\amp 1\\-5\amp -2\amp 8 \end{array} \right)\)6.
\(\A=\left(\begin{array}{rrr}2\amp 4\amp -5\\5\amp 7\amp -2\\-1\amp -5\amp 4 \end{array} \right)\)7.
\(\A=\left(\begin{array}{rrrrrr}2\amp 3\amp 4\amp 2\amp 3\amp 4\\5\amp 6 \amp 7\amp 5\amp 6\amp 7\\8\amp 9\amp 10\amp 8\amp 9\amp 10\end{array} \right)\)8.
\(A=\left(\begin{array}{rrrr}1\amp -2\amp 3\amp 4\\-1\amp 3\amp 0\amp -6\\1\amp -1\amp 6\amp 2 \end{array} \right)\)9.
\(B=\left(\begin{array}{rrrr}1\amp -2\amp 3\amp 4\\-1\amp 3\amp 0\amp -6\\0\amp 1\amp 3\amp 1 \end{array} \right)\)
Exercise Group.
Let \(\vec{u}=\left( \begin{array}{r} 3 \\ 7 \\1 \end{array} \right)\text{.}\)
12.
Let \(\U\) be an upper-triangular matrix. State and prove: \(N(\U)=\left\{\vec{0}\right\}\) if and only if ___________________________.13.
Suppose \(N(\A)=\left\{\vec{0}\right\}.\)
Prove or disprove: \(N(\A^T\A)=\left\{\vec{0}\right\}.\)
Prove or disprove: \(N(\A\A^T)=\left\{\vec{0}\right\}.\)
14.
Prove Theorem 6.1.9.15.
Prove Corollary 6.1.41.