Skip to main content

Section 4.6 Determinant Properties: Homework

Exercises Exercises

5.

Use the method of elimination as described in Remark 4.4.16 to find the determinant of the following matrices.
  1. \(\displaystyle A=\lmatrix{rr} 10 \amp 3\\ -2 \amp \frac{1}{2} \rmatrix.\)
  2. \(\displaystyle B=\lmatrix{rrr} 0 \amp 5 \amp 1 \\3 \amp 2 \amp 8\\ 6 \amp -1 \amp 2 \rmatrix.\)
  3. \(\displaystyle C=\lmatrix{rrr} 6 \amp 0 \amp 3 \\2 \amp 1 \amp -1\\ 1 \amp 2 \amp 5 \rmatrix.\)
  4. \(\displaystyle D=\lmatrix{rrr} 3 \amp 7 \amp 2 \\-6 \amp 1 \amp 4\\ 6 \amp 29 \amp 12 \rmatrix.\)
  5. \(\displaystyle E=\lmatrix{rrr} 0 \amp 0 \amp -1 \\1 \amp 0 \amp 0\\ 0 \amp -1 \amp 0 \rmatrix.\)
  6. \(F=\lmatrix{rrrr} 2 \amp 1 \amp 3 \amp 17 \\4 \amp 2 \amp 6 \amp -8\\ 5 \amp 1 \amp -3 \amp 2 \\ 1 \amp -1 \amp 1 \amp 0 \rmatrix.\)
    Hint.
    It might be helpful to start by swapping rows 1 and 4.
  7. \(\displaystyle G=\lmatrix{rrrrr} 0 \amp 1 \amp 0 \amp 0 \amp 0 \\ 0 \amp 0 \amp 1 \amp 0 \amp 0 \\ 1 \amp 0 \amp 0 \amp 0 \amp 0 \\0 \amp 0 \amp 0 \amp 0 \amp 1 \\0 \amp 0 \amp 0 \amp 1 \amp 0 \rmatrix.\)
  8. \(\displaystyle H=\lmatrix{rrrr} 1 \amp -1 \amp 2 \amp -3 \\6 \amp 7 \amp 1 \amp 5\\ 15 \amp 11 \amp 8 \amp 1 \\ 7 \amp 6 \amp 9 \amp 3 \rmatrix.\)

6.

Prove or disprove: If \(A,B\in\R^{n\times n}\) satisfy \(\det(AB)\ne0\text{,}\)then both \(A\) and \(B\) are invertible.

7.

Let \(A=\begin{pmatrix}39\amp -180\\8\amp -37 \end{pmatrix} \text{.}\) Use Theorem 4.4.15 to find the two numbers \(\lambda_1,\lambda_2\in\R\) for which \(A-\lambda_i I\) is singular, and for each of the \(\lambda_i\) verify that \(A-\lambda_i I\) is singular.