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1 Introduction

A subgroup H of a group G is called an abnormal subgroup of G provided
g € (H,HY) for all g € G and self-normalizing in G if the normalizer of H
in GG is equal to H itself. A subgroup H of a group G is called a pronormal
subgroup of G provided H and HY are conjugate in (H, H9) for all g € G.
Consider the following results about the relationship between self-normality
and abnormality. The first is a routine application of the Sylow theorems
and it provides an ample supply of abnormal subgroups.

Theorem 1.1 Let G be a finite group. Any subgroup of G containing the
normalizer of any Sylow subgroup of G is abnormal and self-normalizing in

G.

Theorem 1.2 [3, p. 247] Let H be a subgroup of a group G. Then H is
abnormal in G if and only if H is both self-normalizing and pronormal in G.

Theorem 1.3 /3, p. 251] Let G be a finite group. Then a subgroup H of G
1s abnormal in G if and only if

(i) every subgroup of G containing H is self-normalizing in G, and

(ii) H is not contained in two distinct conjugate subgroups of G.

We are interested in Theorem 1.3, which was proved by Philip Hall. Taunt
8, 9.2.11] proved that if G is a finite solvable group, then condition (i) alone
is sufficient. Huppert [5, VI|] and Doerk and Hawkes [3, p. 251] discuss
whether (i) alone is sufficient for arbitrary finite groups. The answer is
“no.” A. Feldman [4] provided a counterexample in the finite simple group
Us(3). Thus, it seems reasonable to ask whether there are certain situations
in nonsolvable groups in which (i) guarantees abnormality. The answer is

A subgroup H of a group G is called second mazimal in G provided H is
a maximal subgroup of all maximal subgroups of G containing H. If GG is a
simple group, then note (i) holds for a second maximal subgroup H if and
only if H is self-normalizing. In [11], the third author proved that if H is
second maximal in the alternating group A, where p is a prime, then H is
abnormal in A, if and only if H is self-normalizing. Therefore, (i) is sufficient
to ensure abnormality for second maximal subgroups of A,. In this paper,
our goal is the following generalization.
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Theorem If H is a second mazximal intransitive subgroup of the alter-
nating group A, where p is a prime, then H is abnormal in A, if and only
if H is self-normalizing.

Note the added assumption of intransitivity.

Following some preliminaries in Section 2, we analyze in Section 3 a second
maximal subgroup of A, which is the intersection of an intransitive maximal
subgroup with an imprimitive maximal subgroup. Section 4 contains our
main result.

After completing this work, we learned of the unpublished thesis of A.
Basile [1], which gives information about the second maximal subgroups of
A,. For portions of Section 3, we could cite Basile’s work. Inasmuch as the
thesis is not published and our proofs are not long, we opt instead to include
self-contained proofs of the specific properties we need.

2 Preliminaries

Most of our permutation group notation and terminology is standard as, for
example, in [2]. The following, however, may deserve clarification.

We use the term “imprimitive” to mean transitive, but not primitive.
A “system of imprimitivity” is our name for what is also called a complete
(nontrivial) block system of an imprimitive group.

Let Q ={1,2,...,n}. For any G < S, and I' C Q, we define Gr := { €
G :a" €T for every a € I'} (the setwise stabilizer of T') and Gy := {7y €
G :a" = a for every a € I'} (the pointwise stabilizer of I'). For any subset
Y= {A1,As, ..., Ay} of the power set of Q, we define Gy :={y € G: AV €
3 for every A € ¥} and Gx) := {7y € G: AY = A for every A € ¥}. Thus,
G(x) fixes (setwise) the sets in 3 while Gy, permutes the sets in X.

If I' = {a}, we follow the usual convention and write G, for Gr.

(When X is a partition of €, some authors write G(Aq, Ao, ..., A,) for
our G(y). If, in addition, all the sets in ¥ have the same cardinality, then Gy,
is written by some as G(A; 1Ay 0... L Ay).)

The following lemma is well-known and easy to prove.

Lemma 2.1 IfG, T and 3 are as above, then for any o € S,,, (Gr)® = Gfa,
(Gw))" = Glreys (Gn)" = Clagag..agy d (G)) = Gliagag...any:



If it happens that o normalizes G, then (Gr)® = Gra, (G(p))a = G(rey,

(Gx)" = Giaeag, . agy and (G(z)) = G({ag,08,.,49}) -
We sometimes use Lemma 2.1 without explicit reference. Other famous
results on permutation groups are similarly slighted. We will also use the

following classical results in our proof.

Proposition 2.2 [2, Theorem 3.3A] Let H be a primitive subgroup of S,,. If
H contains a 3-cycle, then A, < H. If H contains a 2-cycle, then H = S,,.

Proposition 2.3 [10, Propostion 8.6] If H is a primitive subgroup of S,
and a,b € {1,2,...,n} with a # b, then either H, # H, or H is reqular of
prime degree.

Proposition 2.4 [10, Propostion 17.5] Suppose H is a transitive subgroup
of Sp, a € {1,2,...,n} and the lengths of the orbits of H, are 1 = ny <
ny < --- < ng. If there is an index j > 1 such that n; and the mazimal
orbit length ny are relatively prime, then H is imprimitive or H is reqular of
prime degree.

Proposition 2.5 Let H be an intransitive subgroup of A,, n > 4 having
exactly two orbits Ay and Ay with |Ay| # |As|. Then (A,)(a,a.}) i the
unique intransitive maximal subgroup of A, containing H .

Proof: Clearly, H < (A,){a,,a5}), Which is well-known to be a maximal
subgroup of A, (see, for example, [6] or [2, Exercises 5.2.8 and 5.2.9]).

Suppose H < M where M is an intransitive maximal subgroup of A,.
Since orbits of H are contained in orbits of M, it is not hard to show that the
orbits of M are A; and A,. Therefore, M < (A,)a,,a,})- By maximality,
M = (A,)({a1,0.}), @ was to be shown.

Our last preliminary result is not hard to prove, but it is perhaps not

well-known.

Theorem 2.6 [9, Theorem 8.19] Let H and K be normal subgroups of G
such that G = H x K and let m and p be the corresponding projections of G
onto H and K, respectively. Let L < G. Then (HNL) is a normal subgroup
of L™ < H, (KN L) is a normal subgroup of L’ < K and L™/(HN L) =
LP/(KNL).

One final comment, all of our direct products are internal.
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3 A Certain Second Maximal Subgroup of A,

In this section, we give information about the structure and embedding of a
second maximal subgroup of A, which is the intersection of an intransitive
maximal subgroup with an imprimitive maximal subgroup.

Lemma 3.1 Assume K < S, contains an odd permutation. If K N A, is
second mazimal in A,,, then K is either mazimal or second mazimal in S,,.

Proof: If K is neither maximal nor second maximal in S,, then there
exist subgroups M and L such that K < M < L < S,,. Since K contains an
odd permutation, it follows that |[K N A,| = |K|/2 < |M N A,| = |M|/2 <
ILN A, = |L|/2 < |A,|. Thus, KNA, < MNA, <LNA, < A,
contradicting the second maximality of K N A,,.

Theorem 3.2 LetQ = {1,2,...,n} andlet ® = {A, Ay} and ¥ = {I'1, Ty, ...

be partitions of Q with |A1| < |As|, € > 1 and there is an integer m > 1
such that |I';| = m for all i. Furthermore, let My = (Sp)@), M2 = (Sn)s,
K:MlﬂMg G/ﬂdH:MlﬂMgmAn

If H is second mazimal in A, then

(i) K is second mazximal in S,,;

(ii) ¢ > 3 and, by reindexing X if necessary, Ay =T'y;

(iii) K = ()0 % ((52)a0) i1, o ry?
(i) the orbits of H on Q2 are Ay and Ay; and
(v)if H< L < A, with L # M; N A, and L # My N A, then L is

primitive.

Proof: (i) We see K < M, for otherwise, H = M; N A, is a maximal
subgroup of A,, (as in the proof of Proposition 2.5). Therefore, K is not a
maximal subgroup of A4,,.

Using Lemma 3.1, it suffices to show K contains a transposition. We claim
there exist ¢, j with |A;NI;| > 2. Suppose to the contrary |A;NI';| < 1 for all
i,j. For any j, we know I'; = (A, NI;)U (AQOF ) and |F | > 2. Thus, |A;N

[';] =1 for all ¢ and j, but then |A, \—Z\Alﬂf | —Z\AQQF | = |Agl.
7j=1 J=1
That is contrary to our hypothesis. Therefore, |A; NT';| > 2 for some 1, j.

7FZ}



Let a,b € A; NT'; with a # b, then (a b) € M; N My = K and the proof of
(i) is complete.

(ii) First, we will show that for all j, either I'; N A; or I'; N Ay is empty,
in other words, either I'; € Ay or I'; € Ay. Suppose I'; NA; and I'; N Ay are
both nonempty for some j. Let ¢; € I';NA,; for ¢ = 1, 2, then the transposition
T := (ty t2) € My\M;. Thus, K < (1,K) < M,. By (i), (1,K) = Ms. In
particular, (7, K') is transitive on . Since I'7 = I; for each ¢, it follows that
K is transitive on .

Thus, for each 7, there is @ € K such that I' = I'y and so (I';NA)* = TN
Ay. That implies |[I';NA| = |T'y N A | for each . Similarly, |I'; NAq| = [T N

¢ ¢

Ao| for each i. Therefore, |Agx| = | [ JT N A)| =D |Ti N A = €T N A

=1 =1
for k = 1,2. Since A; < Ay, we cancel £ to obtain 1 < [I;NA| = |T1NA| <
|F1 N A2| = |Fz N A2| for all i.

Let s; € I';NA; for each i and consider the permutation o = (s1 s9 -+ $p).
Since |I'; N Ag| > 1 for each i, we see o € M;\Ms. Therefore, K < (0, K) <
M, < S, and so (o, K) = M; by the second maximality of K. However,
let w11 and uis be distinct elements of I't N Ay and let uy € I'y N Ay, then
o= (upy ug) € My = {(0,K). Since o fixes each I'; N Ay pointwise, it
follows that {us, u12} = {uyy, ura}* = {uq1, u12}? C I' for some B € K, but
K CMysoTl ’f =T, for some m. That is a contradiction because us € I'y
while U2 € Fl-

Therefore, we have shown that for each j, either I'; € Ay or I'; C
As. By reindexing if necessary, we may suppose that I';,...,I'; € A; and
[ivq,..., T € Ay, For the rest of the proof, it is notationally convenient to
set S:=5, and A:= A,.

By looking at the disjoint cycle decomposition of any element of K, we
see K = K Kia) < SanKiay <SSy < M. The first inclusion
is proper if t # 1. The second inclusion is proper if ¢ # ¢ — 1. Since
K is maximal in M; by (i), both inclusions cannot be proper. Moreover,
|Ay| < |Ag| implies ¢ # ¢ — 1 and also £ # 2. Thus, t = 1 and ¢ > 3.

(iii) Since we now have I'y = Ay, by looking again at the disjoint cycle
decomposition of any element of K we can see K < Sia,) X (S(Al))

Furthermore, S(a,) and (S(Al))
so (iii) holds.



(iv) It suffices to show H is transitive on A; and Ay. Let u,v € A; with
u # v. Take any r,s € T'y with r # s, then (u v)(r s) € H which takes u to
v. Therefore, H is transitive on A;.

Let x,y € Ay, then z € I';, y € I'; for some ¢,j > 2. Since |I';| = |I;], it
is easy to construct a permutation o so that z7 =y, I'V =I';, I'] = I'; and
o fixes the elements of I'y, for each k # i, 7. With (u v) as above, either o or
o(u v) (depending on whether o is even or odd) is an element of H taking x
to y. Thus, H is transitive on As.

(v) Suppose H < L < A,, L is maximal in A,, L # M; N A, and
L # MyN A,. By (iv) and Proposition 2.5, M; N A, is the only intransitive
subgroup of A,, containing H. Therefore, L is transitive.

Assume L is imprimitive. Let T = {Ay, As,..., A} be a system of im-
primitivity for L and let M3 = (S,,)r. Now H < MiNL < L < M3NA, < A,
with the second inclusion being proper because L is transitive while M; N L
is not. The second maximality of H implies H = M; N L and L = M3 N A,.
ThUS, H= M1 N M3 N An

Since T is a system of imprimitivity, there is an integer r such that |A;| =
r > 2 for each ¢ and s > 1. The hypotheses of this theorem are therefore
satisfied with 3 replaced by T" and M, replaced by Ms. We apply (i)-(iii)
and reindex T if necessary to conclude I'y = A; = A; and, consequently,
|Q| = £|T'1| = s|A{| implies ¢ = s.

Now suppose {T's,..., Ty} # {As, ..., Ay}. Without loss of generality,
I'y # A, for any j. Let u € I';. There exists ¢ such that v € A;. Since
[y # A; but |T'g| = |A;], there exists v € Aj\I'y. Take any z,y € I'; with
x #y, then (x y)(uv) € My N Ms;N A, =H < M,. That is a contradiction
because (z y)(u v) moves exactly one element, namely u, of I's and, hence,
does not take I'y to 'y for any k. Therefore, {T's,..., Ty} = {As,..., As},
My = M3 and L = MsN A, a contradiction. Thus, L is primitive as claimed.

Corollary 3.3 Suppose H is a second maximal imprimitive subgroup of A,
having exactly two orbits Ay and Ay with |Ay| # |Ag|. Further suppose H is
not contained in any proper primitive subgroup of A,, then H is contained
in at most two maximal subgroups of A, and these two subgroups are not
conjugate in A,.

If, in addition, H is self-normalizing, then H is abnormal in A,.

Proof: Let ® := {A;,;Ax}, S := S, and A = A,. Without loss of
generality, assume |A;| < |Aq].



By Proposition 2.5, A) is the unique intransitive maximal subgroup of
A containing H. Assume there exists another maximal subgroup W of A
containing H. By hypothesis, W is imprimitive. Let ¥ = {I'y,Iy, ..., I}
be a system of imprimitivity for W, then, by definition, for some m > 1,
II;] = m for all i, £ > 1 and ¥ is a partition of .

Let M; = S(@) and My = Sz, then W < M, and H < MlﬂMgmA <
M; N A < A. By second maximality, H = M; N M, N A. The hypotheses of
Theorem 3.2 are therefore satisfied. By (v) and our hypotheses on H, H is
contained in, at most, the two maximal subgroups M; N A and My N A of A.
Those two subgroups are not conjugate because the first is intransitive and
the second is transitive.

If H is also self-normalizing, then H is abnormal in A by P. Hall’s char-
acterization of abnormal subgroups, Theorem 1.3.

4 The Main Theorem

Theorem 4.1 Suppose H is a subgroup of A,, which is second mazimal, self-
normalizing and intransitive, then either H is abnormal in A, or else H has
exactly two orbits, which have cardinalities 2 and n — 2.

Proof: Let ® := {A;, Ay, ..., A} be the set of orbits of H. By hypoth-
esis, k > 1. There are the following cases to consider: (1) k > 3, (2) k=3
and there are two orbits of equal cardinality greater than 1, (3) k = 3 and
there are two orbits of cardinality equal to 1, (4) & = 3 and the orbits have
distinct cardinalities, (5) & = 2 and both orbits have cardinality greater than
2, (6) k = 2 and there is an orbit of cardinality 1, (7) k = 2 and there is an
orbit of cardinality 2. We will show each of cases (1)-(6) either do not occur
or else implies H is abnormal in A,,. In a few cases, we mimic proofs from
[7].

As usual, we let S := S,, and A := A,,. We may assume n > 5 since A,,
Az and A4 have no subgroups satisfying the hypotheses.

Case (1) H has more than three orbits.

By second maximality, H # 1. Without loss of generality, |A;| > 1. Tt is
then routine to show H < A(q,) < A({A1UA2,...,Ak}) < A({AIUAQUAg,...,Ak}) < A,
contradicting the second maximality of H.

Case (2) H has three orbits and, without loss of generality, |A;| = |Ag| >
1.



In this case, H < Aw@) < (A(@)) < A(taua0,05)) < A, contradict-

ing second maximality.
Case (3) H has three orbits and, without loss of generality, |A;]| = |Aq| =

{A1,A2}

1.

Let Ay = {1} and Ay = {2}. We have H < Ag) < Ap < A, 50 H = A
by second maximality. (In other words, H is a 2-point stabilizer in A, which is
isomorphic to A,_».) The permutation (1 2)(3 4) € A therefore normalizes H
(by Lemma 2.1) but is not in H, contradicting the self-normality hypothesis.

Case (4) H has three orbits and, without loss of generality, |A;| < |Ag| <
|As].

In this case, it is not hard to show H < Aw@) < Agaauasy) < A
Thus, H = A(e). Furthermore, if |A; U Ay| = |A3|, then H = A <
Aauns,as) < Arauasagy < A, acontradiction. Therefore, we may assume
[ A1 U Ag| # |Ag].

Since |Az] > 3, H contains a 3-cycle. By Proposition 2.2, H is not
contained in a maximal primitive subgroup of A. Assume H is contained in
a maximal imprimitive subgroup M of A. Thus, H < Aya,uasas) N M <
M < A, the second inclusion being proper since M is transitive but the
intersection is not. Therefore, H = Aa,ua,,a,}). However, we can show the
hypotheses of Theorem 3.2 are satisfied with M; = Aa,ua,,a5)) and My =
M. Therefore, by Theorem 3.2(iv), H has only two orbits, a contradiction.
Hence, H is not contained in a maximal imprimitive subgroup of A.

Thus, the only proper subgroups of A which could properly contain H
are the intransitive subgroups Aa,ua..a51), Aqar,asuasy and Agauas aqy)-
No two of those are conjugate because our hypotheses on orbit cardinalities
and our reduction to the case |[A; U Ay| # |As| show that no two pairs of
sets in any of those three stabilizers have matching cardinalities. Therefore,
H is abnormal in A by Philip Hall’s characterization, Theorem 1.3.

Case (5) H has two orbits A; and A, each having cardinality greater
than 2.

First assume |A;| = |Ay|. Here we have H < Ag) < Ap < A. Therefore,
H = A). However, A) is a normal subgroup of Ag as is easily shown by
direct calculation (or the reader who notes the wreath action of Ag on € will
see [Ag : A@y] = 2). Thus, H is not self-normalizing, contrary to hypothesis.
Therefore, we may assume |A;| # |Ay].



For any o € H, from the disjoint cycle decomposition of o, we see there
exist unique o1 € S(a,), 02 € S(a,) With o = g103. Thus, H < Sa,) X Sa))
and we define H; := {0, : 0 € H} for i = 1,2. In other words, H; is
the projection of H onto Sa,) and Hj is the projection of H onto S(a,).
Therefore, H; < S(a,) and Hy < S(a ).

If Hy < S(a,), then H < (Hy x Sa,)) N A < Ay with the last inclusion
being proper because we can take a € Sia,)\H; and find 3 € S(a,) such
that o € A. Therefore, a8 € Aw) but af ¢ (Hy x Sia,)) N A. By the
second maximality of H, H = (H; x Sia,)) N A. Since |Ay| > 2, it follows
that H contains a 3-cycle from Sia,). Therefore, by Proposition 2.2, H is
not contained in any proper primitive subgroup of A. By Corollary 3.3, H is
abnormal.

Hence, we may assume H; = Sa,) and, by symmetry, Hy = Sia,). Let
N1y = Hp,) < Aay) and Ny = Hiayy) < Agayy- It is routine to show N is a
normal subgroup of H; and N, is a normal subgroup of Hs.

If Ny = Aa,) or Ny = A(ay), then H contains a 3-cycle and we are finished
as above. Thus, N; is a normal subgroup of S(a,) = Sa,| properly contained
in Aa,) = Aja,|. Therefore, either Ny =1 or |A;| € {3,4}. Similarly, either
Ny =1 or |As] € {3,4}.

Recalling that H < S(a,)XS(a,) = Hy x Hy and noting Ny = HNS,) and
Ny = H N Sa,), a direct application of Theorem 2.6 gives Hy /Ny = Hy/Ns.

If Ny =1 = N, then from the isomorphism we obtain |A;|! = |H;| =
|Hy| = |As]!, contradicting our assumption |[Aj] # |Ag|. If N3 = 1 # N,
then |Ay|! = |Hy| = |Ha/N2| < 4l So |Ay| € {3,4}. Likewise, if Ny =1 #
Ny, then |Ay] € {3,4}. Thus, in all cases, |A;],|As] € {3,4}. Therefore,
n = |A1] +|Az| = 7. We can assume |A;| = 3 and |Ay| = 4. It follows that
N1 =1 and |N2| =4.

We claim |H| = 24. Once we establish the claim, we are finished because
then H contains a Sylow 2-subgroup of A;, which is self-normalizing in A;.
Therefore, H is abnormal by Theorem 1.1.

Let 09 € H,, then there exists oy € Hy with o109 € H. Suppose o] € H;
with ooy € H, then (0]09)(0109)! = dloy' € HN Say = Ny = 1.
Therefore, oy is unique and so the relation taking oy to oy09 is a function
from H, to H. That function is injective by the uniqueness we noted when
defining Hy and H,. Therefore, 24 = |Hy| < |H|. However, we also have H
is a maximal subgroup of A(g), which has order 72 in this situation. Thus,
|H| = 24 as claimed.



Case (6) H has exactly two orbits and, without loss of generality, |A;| < 2.

As usual, A(g) is the unique intransitive subgroup of A containing H. In
this case, A(g) is simply Ax,.

We will show H is abnormal in A directly. Let ¢ € A and let M :=
(H,HY). We need to show g € M. Either M = A, M = H or M is a
maximal subgroup of A. The first situation is trivial. In the second case,
H = HY, so g € H since H is self-normalizing. Therefore, we may assume
M is a maximal subgroup of A.

First we will handle the cases where M is intransitive and where |A;| = 1.
To finish, we will look at M being imprimitive and then primitive.

If M is intransitive, then M = Ax,, by the uniqueness noted above. Thus,

H = (H% " < A ;-1 which implies Ay, = A -1, again by uniqueness. If
1 1

follows that A{l = A and g € Ax, = M, as was to be shown.

Assume M is transitive, then H < MNAx, = Ma, < M < A. Therefore,
H = Mp,. Similarly, H9 = Mug since HY is also second maximal in A.

In all the remaining cases, our stategy is to show AY = A¥ for some
x € M. For if that is the case, then H9 = Mps = Ma; = (Ma,)" = H".
Because of the self-normality, gz=! € H < M and so g € M, as was to be
shown..

If |A;| = 1, then by transitivity, A = A7 for some x € M. We may
henceforth assume |A;| = 2.

Next consider the case where M is imprimitive. Let ¥ be a system of
imprimitivity for M, then M = Ay, by maximality. Thus, H = Mx, =
M N Ax, = As N Ax, = Sy N Sa, N A, which means the hypotheses of
Theorem 3.2 are satisfied. By Theorem 3.2, A; € 3. We showed earlier
that HY = Mus and so we have A{ € ¥ by applying Theorem 3.2 to HY.
Therefore, there exists x € M such that A{ = Af.

Finally, assume M is primitive. Let a € Ay and ¢ € A,. Since |A;| = 2,
we have H, = (Ma,)s = M(a,) and [H : H,] = 2. Thus, either H,H. = H,
in which case H, is transitive on Ay, or else H,H. = H,, in which case H,
has two orbits of lengths (n — 2)/2 on A,.

Consider M,. If M, fixes some point other than a, then M is regular of
prime degree by Proposition 2.3, a contradiction. Combining that with the
fact that M, orbits on {1,2,...n} are unions of H, orbits, we see that the
M, orbits have lengths 1 and n — 1 or else 1, (n — 2)/2 and n/2. In the
latter case, M would again by regular of prime degree by Proposition 2.4.
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Therefore, the first case holds and M is 2-transitive. Once again, there exists
x € M such that A = A7 and the proof is complete.
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