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1 Introduction

A subgroup H of a group G is called an abnormal subgroup of G provided
g ∈ 〈H, Hg〉 for all g ∈ G and self-normalizing in G if the normalizer of H
in G is equal to H itself. A subgroup H of a group G is called a pronormal
subgroup of G provided H and Hg are conjugate in 〈H, Hg〉 for all g ∈ G.
Consider the following results about the relationship between self-normality
and abnormality. The first is a routine application of the Sylow theorems
and it provides an ample supply of abnormal subgroups.

Theorem 1.1 Let G be a finite group. Any subgroup of G containing the
normalizer of any Sylow subgroup of G is abnormal and self-normalizing in
G.

Theorem 1.2 [3, p. 247] Let H be a subgroup of a group G. Then H is
abnormal in G if and only if H is both self-normalizing and pronormal in G.

Theorem 1.3 [3, p. 251] Let G be a finite group. Then a subgroup H of G
is abnormal in G if and only if

(i) every subgroup of G containing H is self-normalizing in G, and
(ii) H is not contained in two distinct conjugate subgroups of G.

We are interested in Theorem 1.3, which was proved by Philip Hall. Taunt
[8, 9.2.11] proved that if G is a finite solvable group, then condition (i) alone
is sufficient. Huppert [5, VI] and Doerk and Hawkes [3, p. 251] discuss
whether (i) alone is sufficient for arbitrary finite groups. The answer is
“no.” A. Feldman [4] provided a counterexample in the finite simple group
U3(3). Thus, it seems reasonable to ask whether there are certain situations
in nonsolvable groups in which (i) guarantees abnormality. The answer is
“yes.”

A subgroup H of a group G is called second maximal in G provided H is
a maximal subgroup of all maximal subgroups of G containing H . If G is a
simple group, then note (i) holds for a second maximal subgroup H if and
only if H is self-normalizing. In [11], the third author proved that if H is
second maximal in the alternating group Ap where p is a prime, then H is
abnormal in Ap if and only if H is self-normalizing. Therefore, (i) is sufficient
to ensure abnormality for second maximal subgroups of Ap. In this paper,
our goal is the following generalization.
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Theorem If H is a second maximal intransitive subgroup of the alter-
nating group An where p is a prime, then H is abnormal in An if and only
if H is self-normalizing.

Note the added assumption of intransitivity.
Following some preliminaries in Section 2, we analyze in Section 3 a second

maximal subgroup of An which is the intersection of an intransitive maximal
subgroup with an imprimitive maximal subgroup. Section 4 contains our
main result.

After completing this work, we learned of the unpublished thesis of A.
Basile [1], which gives information about the second maximal subgroups of
An. For portions of Section 3, we could cite Basile’s work. Inasmuch as the
thesis is not published and our proofs are not long, we opt instead to include
self-contained proofs of the specific properties we need.

2 Preliminaries

Most of our permutation group notation and terminology is standard as, for
example, in [2]. The following, however, may deserve clarification.

We use the term “imprimitive” to mean transitive, but not primitive.
A “system of imprimitivity” is our name for what is also called a complete
(nontrivial) block system of an imprimitive group.

Let Ω = {1, 2, . . . , n}. For any G ≤ Sn and Γ ⊆ Ω, we define GΓ := {γ ∈
G : aγ ∈ Γ for every a ∈ Γ} (the setwise stabilizer of Γ) and G(Γ) := {γ ∈
G : aγ = a for every a ∈ Γ} (the pointwise stabilizer of Γ). For any subset
Σ := {∆1, ∆2, . . . , ∆�} of the power set of Ω, we define GΣ := {γ ∈ G : ∆γ ∈
Σ for every ∆ ∈ Σ} and G(Σ) := {γ ∈ G : ∆γ = ∆ for every ∆ ∈ Σ}. Thus,
G(Σ) fixes (setwise) the sets in Σ while GΣ permutes the sets in Σ.

If Γ = {a}, we follow the usual convention and write Ga for GΓ.
(When Σ is a partition of Ω, some authors write G(∆1, ∆2, . . . , ∆�) for

our G(Σ). If, in addition, all the sets in Σ have the same cardinality, then GΣ

is written by some as G(∆1 � ∆2 � . . . � ∆�).)
The following lemma is well-known and easy to prove.

Lemma 2.1 If G, Γ and Σ are as above, then for any α ∈ Sn, (GΓ)α = Gα
Γα,(

G(Γ)

)α
= Gα

(Γα), (GΣ)α = Gα
{∆α

1 ,∆α
2 ,...,∆α

�
} and

(
G(Σ)

)α
= Gα

({∆α
1 ,∆α

2 ,...,∆α
�
}).
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If it happens that α normalizes G, then (GΓ)α = GΓα,
(
G(Γ)

)α
= G(Γα),

(GΣ)α = G{∆α
1 ,∆α

2 ,...,∆α
�
} and

(
G(Σ)

)α
= G({∆α

1 ,∆α
2 ,...,∆α

�
}).

We sometimes use Lemma 2.1 without explicit reference. Other famous
results on permutation groups are similarly slighted. We will also use the
following classical results in our proof.

Proposition 2.2 [2, Theorem 3.3A] Let H be a primitive subgroup of Sn. If
H contains a 3-cycle, then An ≤ H. If H contains a 2-cycle, then H = Sn.

Proposition 2.3 [10, Propostion 8.6] If H is a primitive subgroup of Sn

and a, b ∈ {1, 2, . . . , n} with a �= b, then either Ha �= Hb or H is regular of
prime degree.

Proposition 2.4 [10, Propostion 17.5] Suppose H is a transitive subgroup
of Sn, a ∈ {1, 2, . . . , n} and the lengths of the orbits of Ha are 1 = n1 ≤
n2 ≤ · · · ≤ nk. If there is an index j > 1 such that nj and the maximal
orbit length nk are relatively prime, then H is imprimitive or H is regular of
prime degree.

Proposition 2.5 Let H be an intransitive subgroup of An, n ≥ 4 having
exactly two orbits ∆1 and ∆2 with |∆1| �= |∆2|. Then (An)({∆1,∆2}) is the
unique intransitive maximal subgroup of An containing H.

Proof: Clearly, H ≤ (An)({∆1,∆2}), which is well-known to be a maximal
subgroup of An (see, for example, [6] or [2, Exercises 5.2.8 and 5.2.9]).

Suppose H ≤ M where M is an intransitive maximal subgroup of An.
Since orbits of H are contained in orbits of M , it is not hard to show that the
orbits of M are ∆1 and ∆2. Therefore, M ≤ (An)({∆1,∆2}). By maximality,
M = (An)({∆1,∆2}), as was to be shown.

Our last preliminary result is not hard to prove, but it is perhaps not
well-known.

Theorem 2.6 [9, Theorem 8.19] Let H and K be normal subgroups of G
such that G = H × K and let π and ρ be the corresponding projections of G
onto H and K, respectively. Let L ≤ G. Then (H ∩L) is a normal subgroup
of Lπ ≤ H, (K ∩ L) is a normal subgroup of Lρ ≤ K and Lπ/(H ∩ L) ∼=
Lρ/(K ∩ L).

One final comment, all of our direct products are internal.
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3 A Certain Second Maximal Subgroup of An

In this section, we give information about the structure and embedding of a
second maximal subgroup of An which is the intersection of an intransitive
maximal subgroup with an imprimitive maximal subgroup.

Lemma 3.1 Assume K ≤ Sn contains an odd permutation. If K ∩ An is
second maximal in An, then K is either maximal or second maximal in Sn.

Proof: If K is neither maximal nor second maximal in Sn, then there
exist subgroups M and L such that K < M < L < Sn. Since K contains an
odd permutation, it follows that |K ∩ An| = |K|/2 < |M ∩ An| = |M |/2 <
|L ∩ An| = |L|/2 < |An|. Thus, K ∩ An < M ∩ An < L ∩ An < An,
contradicting the second maximality of K ∩ An.

Theorem 3.2 Let Ω = {1, 2, . . . , n} and let Φ = {∆1, ∆2} and Σ = {Γ1, Γ2, . . . , Γ�}
be partitions of Ω with |∆1| < |∆2|, � > 1 and there is an integer m > 1
such that |Γi| = m for all i. Furthermore, let M1 = (Sn)(Φ), M2 = (Sn)Σ,
K = M1 ∩ M2 and H = M1 ∩ M2 ∩ An.

If H is second maximal in An, then
(i) K is second maximal in Sn;
(ii) � ≥ 3 and, by reindexing Σ if necessary, ∆1 = Γ1;

(iii) K = (Sn)(∆2) ×
(
(Sn)(∆1)

)
{Γ2,Γ3,...,Γ�}

;

(iv) the orbits of H on Ω are ∆1 and ∆2; and
(v) if H < L < An with L �= M1 ∩ An and L �= M2 ∩ An, then L is

primitive.

Proof: (i) We see K < M1, for otherwise, H = M1 ∩ An is a maximal
subgroup of An (as in the proof of Proposition 2.5). Therefore, K is not a
maximal subgroup of An.

Using Lemma 3.1, it suffices to show K contains a transposition. We claim
there exist i, j with |∆i∩Γj | ≥ 2. Suppose to the contrary |∆i∩Γj | ≤ 1 for all
i, j. For any j, we know Γj = (∆1 ∩Γj)∪ (∆2∩Γj) and |Γj| ≥ 2. Thus, |∆i∩
Γj| = 1 for all i and j, but then |∆1| =

�∑
j=1

|∆1 ∩ Γj| =
�∑

j=1

|∆2 ∩ Γj | = |∆2|.
That is contrary to our hypothesis. Therefore, |∆i ∩ Γj | ≥ 2 for some i, j.
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Let a, b ∈ ∆i ∩ Γj with a �= b, then (a b) ∈ M1 ∩ M2 = K and the proof of
(i) is complete.

(ii) First, we will show that for all j, either Γj ∩ ∆1 or Γj ∩ ∆2 is empty,
in other words, either Γj ⊆ ∆1 or Γj ⊆ ∆2. Suppose Γj ∩∆1 and Γj ∩∆2 are
both nonempty for some j. Let ti ∈ Γj∩∆i for i = 1, 2, then the transposition
τ := (t1 t2) ∈ M2\M1. Thus, K < 〈τ, K〉 ≤ M2. By (i), 〈τ, K〉 = M2. In
particular, 〈τ, K〉 is transitive on Σ. Since Γτ

i = Γi for each i, it follows that
K is transitive on Σ.

Thus, for each i, there is α ∈ K such that Γα
i = Γ1 and so (Γi∩∆1)

α = Γi∩
∆1. That implies |Γi∩∆1| = |Γ1∩∆1| for each i. Similarly, |Γi∩∆2| = |Γ1∩
∆2| for each i. Therefore, |∆k| = |

�⋃
i=1

(Γi ∩ ∆k)| =
�∑

i=1

|Γi ∩ ∆k| = �|Γ1 ∩ ∆k|
for k = 1, 2. Since ∆1 < ∆2, we cancel � to obtain 1 ≤ |Γi∩∆1| = |Γ1∩∆1| <
|Γ1 ∩ ∆2| = |Γi ∩ ∆2| for all i.

Let si ∈ Γi∩∆1 for each i and consider the permutation σ = (s1 s2 · · · s�).
Since |Γi ∩ ∆2| > 1 for each i, we see σ ∈ M1\M2. Therefore, K < 〈σ, K〉 ≤
M1 < Sn and so 〈σ, K〉 = M1 by the second maximality of K. However,
let u11 and u12 be distinct elements of Γ1 ∩ ∆2 and let u2 ∈ Γ2 ∩ ∆2, then
µ := (u11 u2) ∈ M1 = 〈σ, K〉. Since σ fixes each Γi ∩ ∆2 pointwise, it
follows that {u2, u12} = {u11, u12}µ = {u11, u12}β ⊆ Γβ for some β ∈ K, but
K ⊆ M2 so Γβ

1 = Γm for some m. That is a contradiction because u2 ∈ Γ2

while u12 ∈ Γ1.
Therefore, we have shown that for each j, either Γj ⊆ ∆1 or Γj ⊆

∆2. By reindexing if necessary, we may suppose that Γ1, . . . , Γt ⊆ ∆1 and
Γt+1, . . . , Γ� ⊆ ∆2. For the rest of the proof, it is notationally convenient to
set S := Sn and A := An.

By looking at the disjoint cycle decomposition of any element of K, we
see K = K(∆2)K(∆1) ≤ S(∆2)K(∆1) ≤ S(∆2)S(∆1) ≤ M1. The first inclusion
is proper if t �= 1. The second inclusion is proper if t �= � − 1. Since
K is maximal in M1 by (i), both inclusions cannot be proper. Moreover,
|∆1| < |∆2| implies t �= � − 1 and also � �= 2. Thus, t = 1 and � ≥ 3.

(iii) Since we now have Γ1 = ∆1, by looking again at the disjoint cycle

decomposition of any element of K we can see K ≤ S(∆2)×
(
S(∆1)

)
{Γ2,Γ3,...,Γ�}

.

Furthermore, S(∆2) and
(
S(∆1)

)
{Γ2,Γ3,...,Γ�}

are each clearly in M1 ∩ M2 = K,

so (iii) holds.
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(iv) It suffices to show H is transitive on ∆1 and ∆2. Let u, v ∈ ∆1 with
u �= v. Take any r, s ∈ Γ2 with r �= s, then (u v)(r s) ∈ H which takes u to
v. Therefore, H is transitive on ∆1.

Let x, y ∈ ∆2, then x ∈ Γi, y ∈ Γj for some i, j ≥ 2. Since |Γi| = |Γj|, it
is easy to construct a permutation σ so that xσ = y, Γσ

i = Γj, Γσ
j = Γi and

σ fixes the elements of Γk for each k �= i, j. With (u v) as above, either σ or
σ(u v) (depending on whether σ is even or odd) is an element of H taking x
to y. Thus, H is transitive on ∆2.

(v) Suppose H < L < An, L is maximal in An, L �= M1 ∩ An and
L �= M2 ∩ An. By (iv) and Proposition 2.5, M1 ∩ An is the only intransitive
subgroup of An containing H . Therefore, L is transitive.

Assume L is imprimitive. Let T = {Λ1, Λ2, . . . , Λs} be a system of im-
primitivity for L and let M3 = (Sn)T . Now H ≤ M1∩L < L ≤ M3∩An < An

with the second inclusion being proper because L is transitive while M1 ∩ L
is not. The second maximality of H implies H = M1 ∩ L and L = M3 ∩ An.
Thus, H = M1 ∩ M3 ∩ An.

Since T is a system of imprimitivity, there is an integer r such that |Λi| =
r ≥ 2 for each i and s > 1. The hypotheses of this theorem are therefore
satisfied with Σ replaced by T and M2 replaced by M3. We apply (i)-(iii)
and reindex T if necessary to conclude Γ1 = ∆1 = Λ1 and, consequently,
|Ω| = �|Γ1| = s|Λ1| implies � = s.

Now suppose {Γ2, . . . , Γ�} �= {Λ2, . . . , Λ�}. Without loss of generality,
Γ2 �= Λj for any j. Let u ∈ Γ2. There exists i such that u ∈ Λi. Since
Γ2 �= Λi but |Γ2| = |Λi|, there exists v ∈ Λi\Γ2. Take any x, y ∈ Γ1 with
x �= y, then (x y)(u v) ∈ M1 ∩ M3 ∩ An = H ≤ M2. That is a contradiction
because (x y)(u v) moves exactly one element, namely u, of Γ2 and, hence,
does not take Γ2 to Γk for any k. Therefore, {Γ2, . . . , Γ�} = {Λ2, . . . , Λ�},
M2 = M3 and L = M2∩An, a contradiction. Thus, L is primitive as claimed.

Corollary 3.3 Suppose H is a second maximal imprimitive subgroup of An

having exactly two orbits ∆1 and ∆2 with |∆1| �= |∆2|. Further suppose H is
not contained in any proper primitive subgroup of An, then H is contained
in at most two maximal subgroups of An and these two subgroups are not
conjugate in An.

If, in addition, H is self-normalizing, then H is abnormal in An.

Proof: Let Φ := {∆1, ∆2}, S := Sn and A = An. Without loss of
generality, assume |∆1| < |∆2|.
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By Proposition 2.5, A(Φ) is the unique intransitive maximal subgroup of
A containing H . Assume there exists another maximal subgroup W of A
containing H . By hypothesis, W is imprimitive. Let Σ = {Γ1, Γ2, . . . , Γ�}
be a system of imprimitivity for W , then, by definition, for some m > 1,
|Γi| = m for all i, � > 1 and Σ is a partition of Ω.

Let M1 = S(Φ) and M2 = SΣ, then W ≤ M2 and H ≤ M1 ∩ M2 ∩ A <
M1 ∩ A < A. By second maximality, H = M1 ∩ M2 ∩ A. The hypotheses of
Theorem 3.2 are therefore satisfied. By (v) and our hypotheses on H , H is
contained in, at most, the two maximal subgroups M1 ∩A and M2 ∩A of A.
Those two subgroups are not conjugate because the first is intransitive and
the second is transitive.

If H is also self-normalizing, then H is abnormal in A by P. Hall’s char-
acterization of abnormal subgroups, Theorem 1.3.

4 The Main Theorem

Theorem 4.1 Suppose H is a subgroup of An which is second maximal, self-
normalizing and intransitive, then either H is abnormal in An or else H has
exactly two orbits, which have cardinalities 2 and n − 2.

Proof: Let Φ := {∆1, ∆2, . . . , ∆k} be the set of orbits of H . By hypoth-
esis, k > 1. There are the following cases to consider: (1) k > 3, (2) k = 3
and there are two orbits of equal cardinality greater than 1, (3) k = 3 and
there are two orbits of cardinality equal to 1, (4) k = 3 and the orbits have
distinct cardinalities, (5) k = 2 and both orbits have cardinality greater than
2, (6) k = 2 and there is an orbit of cardinality 1, (7) k = 2 and there is an
orbit of cardinality 2. We will show each of cases (1)-(6) either do not occur
or else implies H is abnormal in An. In a few cases, we mimic proofs from
[7].

As usual, we let S := Sn and A := An. We may assume n ≥ 5 since A2,
A3 and A4 have no subgroups satisfying the hypotheses.

Case (1) H has more than three orbits.
By second maximality, H �= 1. Without loss of generality, |∆1| > 1. It is

then routine to show H ≤ A(Φ) < A({∆1∪∆2,...,∆k}) < A({∆1∪∆2∪∆3,...,∆k}) < A,
contradicting the second maximality of H .

Case (2) H has three orbits and, without loss of generality, |∆1| = |∆2| >
1.
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In this case, H ≤ A(Φ) <
(
A(Φ)

)
{∆1,∆2}

< A({∆1∪∆2,∆3}) < A, contradict-

ing second maximality.
Case (3) H has three orbits and, without loss of generality, |∆1| = |∆2| =

1.
Let ∆1 = {1} and ∆2 = {2}. We have H ≤ A(Φ) < AΦ < A, so H = A(Φ)

by second maximality. (In other words, H is a 2-point stabilizer in A, which is
isomorphic to An−2.) The permutation (1 2)(3 4) ∈ A therefore normalizes H
(by Lemma 2.1) but is not in H , contradicting the self-normality hypothesis.

Case (4) H has three orbits and, without loss of generality, |∆1| < |∆2| <
|∆3|.

In this case, it is not hard to show H ≤ A(Φ) < A({∆1,∆2∪∆3}) < A.
Thus, H = A(Φ). Furthermore, if |∆1 ∪ ∆2| = |∆3|, then H = A(Φ) <
A({∆1∪∆2,∆3}) < A{∆1∪∆2,∆3} < A, a contradiction. Therefore, we may assume
|∆1 ∪ ∆2| �= |∆3|.

Since |∆3| ≥ 3, H contains a 3-cycle. By Proposition 2.2, H is not
contained in a maximal primitive subgroup of A. Assume H is contained in
a maximal imprimitive subgroup M of A. Thus, H ≤ A({∆1∪∆2,∆3}) ∩ M <
M < A, the second inclusion being proper since M is transitive but the
intersection is not. Therefore, H = A({∆1∪∆2,∆3}). However, we can show the
hypotheses of Theorem 3.2 are satisfied with M1 = A({∆1∪∆2,∆3}) and M2 =
M . Therefore, by Theorem 3.2(iv), H has only two orbits, a contradiction.
Hence, H is not contained in a maximal imprimitive subgroup of A.

Thus, the only proper subgroups of A which could properly contain H
are the intransitive subgroups A({∆1∪∆2,∆3}), A({∆1,∆2∪∆3}) and A({∆1∪∆3,∆3}).
No two of those are conjugate because our hypotheses on orbit cardinalities
and our reduction to the case |∆1 ∪ ∆2| �= |∆3| show that no two pairs of
sets in any of those three stabilizers have matching cardinalities. Therefore,
H is abnormal in A by Philip Hall’s characterization, Theorem 1.3.

Case (5) H has two orbits ∆1 and ∆2 each having cardinality greater
than 2.

First assume |∆1| = |∆2|. Here we have H ≤ A(Φ) < AΦ < A. Therefore,
H = A(Φ). However, A(Φ) is a normal subgroup of AΦ as is easily shown by
direct calculation (or the reader who notes the wreath action of AΦ on Ω will
see [AΦ : A(Φ)] = 2). Thus, H is not self-normalizing, contrary to hypothesis.
Therefore, we may assume |∆1| �= |∆2|.
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For any σ ∈ H , from the disjoint cycle decomposition of σ, we see there
exist unique σ1 ∈ S(∆2), σ2 ∈ S(∆1) with σ = σ1σ2. Thus, H ≤ S(∆2) × S(∆1)

and we define Hi := {σi : σ ∈ H} for i = 1, 2. In other words, H1 is
the projection of H onto S(∆2) and H2 is the projection of H onto S(∆1).
Therefore, H1 ≤ S(∆2) and H2 ≤ S(∆1).

If H1 < S(∆2), then H ≤ (H1 × S(∆1)) ∩ A < A(Φ) with the last inclusion
being proper because we can take α ∈ S(∆2)\H1 and find β ∈ S(∆1) such
that αβ ∈ A. Therefore, αβ ∈ A(Φ) but αβ /∈ (H1 × S(∆1)) ∩ A. By the
second maximality of H , H = (H1 × S(∆1)) ∩ A. Since |∆2| > 2, it follows
that H contains a 3-cycle from S(∆1). Therefore, by Proposition 2.2, H is
not contained in any proper primitive subgroup of A. By Corollary 3.3, H is
abnormal.

Hence, we may assume H1 = S(∆2) and, by symmetry, H2 = S(∆1). Let
N1 = H(∆2) ≤ A(∆2) and N2 = H(∆1) ≤ A(∆1). It is routine to show N1 is a
normal subgroup of H1 and N2 is a normal subgroup of H2.

If N1 = A(∆2) or N2 = A(∆1), then H contains a 3-cycle and we are finished
as above. Thus, N1 is a normal subgroup of S(∆2)

∼= S|∆1| properly contained
in A(∆2)

∼= A|∆1|. Therefore, either N1 = 1 or |∆1| ∈ {3, 4}. Similarly, either
N2 = 1 or |∆2| ∈ {3, 4}.

Recalling that H ≤ S(∆2)×S(∆1) = H1×H2 and noting N1 = H∩S(∆2) and
N2 = H ∩ S(∆1), a direct application of Theorem 2.6 gives H1/N1

∼= H2/N2.
If N1 = 1 = N2, then from the isomorphism we obtain |∆1|! = |H1| =

|H2| = |∆2|!, contradicting our assumption |∆1| �= |∆2|. If N1 = 1 �= N2,
then |∆1|! = |H1| = |H2/N2| ≤ 4!. So |∆1| ∈ {3, 4}. Likewise, if N2 = 1 �=
N1, then |∆2| ∈ {3, 4}. Thus, in all cases, |∆1|, |∆2| ∈ {3, 4}. Therefore,
n = |∆1| + |∆2| = 7. We can assume |∆1| = 3 and |∆2| = 4. It follows that
N1 = 1 and |N2| = 4.

We claim |H| = 24. Once we establish the claim, we are finished because
then H contains a Sylow 2-subgroup of A7, which is self-normalizing in A7.
Therefore, H is abnormal by Theorem 1.1.

Let σ2 ∈ H2, then there exists σ1 ∈ H1 with σ1σ2 ∈ H . Suppose σ′
1 ∈ H1

with σ′
1σ2 ∈ H , then (σ′

1σ2)(σ1σ2)
−1 = σ′

1σ
−1
1 ∈ H ∩ S(∆2) = N1 = 1.

Therefore, σ1 is unique and so the relation taking σ2 to σ1σ2 is a function
from H2 to H . That function is injective by the uniqueness we noted when
defining H1 and H2. Therefore, 24 = |H2| ≤ |H|. However, we also have H
is a maximal subgroup of A(Φ), which has order 72 in this situation. Thus,
|H| = 24 as claimed.
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Case (6) H has exactly two orbits and, without loss of generality, |∆1| ≤ 2.
As usual, A(Φ) is the unique intransitive subgroup of A containing H . In

this case, A(Φ) is simply A∆1.
We will show H is abnormal in A directly. Let g ∈ A and let M :=

〈H, Hg〉. We need to show g ∈ M . Either M = A, M = H or M is a
maximal subgroup of A. The first situation is trivial. In the second case,
H = Hg, so g ∈ H since H is self-normalizing. Therefore, we may assume
M is a maximal subgroup of A.

First we will handle the cases where M is intransitive and where |∆1| = 1.
To finish, we will look at M being imprimitive and then primitive.

If M is intransitive, then M = A∆1 , by the uniqueness noted above. Thus,
H = (Hg)g−1 ≤ A

∆g−1

1

which implies A∆1 = A
∆g−1

1

, again by uniqueness. If

follows that ∆g−1

1 = ∆1 and g ∈ A∆1 = M , as was to be shown.
Assume M is transitive, then H ≤ M∩A∆1 = M∆1 < M < A. Therefore,

H = M∆1 . Similarly, Hg = M∆g
1

since Hg is also second maximal in A.
In all the remaining cases, our stategy is to show ∆g

1 = ∆x
1 for some

x ∈ M . For if that is the case, then Hg = M∆g
1

= M∆x
1

= (M∆1)
x = Hx.

Because of the self-normality, gx−1 ∈ H ≤ M and so g ∈ M , as was to be
shown..

If |∆1| = 1, then by transitivity, ∆g
1 = ∆x

1 for some x ∈ M . We may
henceforth assume |∆1| = 2.

Next consider the case where M is imprimitive. Let Σ be a system of
imprimitivity for M , then M = AΣ, by maximality. Thus, H = M∆1 =
M ∩ A∆1 = AΣ ∩ A∆1 = SΣ ∩ S∆1 ∩ A, which means the hypotheses of
Theorem 3.2 are satisfied. By Theorem 3.2, ∆1 ∈ Σ. We showed earlier
that Hg = M∆g

1
and so we have ∆g

1 ∈ Σ by applying Theorem 3.2 to Hg.
Therefore, there exists x ∈ M such that ∆g

1 = ∆x
1 .

Finally, assume M is primitive. Let a ∈ ∆1 and c ∈ ∆2. Since |∆1| = 2,
we have Ha = (M∆1)a = M(∆1) and [H : Ha] = 2. Thus, either HaHc = H ,
in which case Ha is transitive on ∆2, or else HaHc = Ha, in which case Ha

has two orbits of lengths (n − 2)/2 on ∆2.
Consider Ma. If Ma fixes some point other than a, then M is regular of

prime degree by Proposition 2.3, a contradiction. Combining that with the
fact that Ma orbits on {1, 2, . . . n} are unions of Ha orbits, we see that the
Ma orbits have lengths 1 and n − 1 or else 1, (n − 2)/2 and n/2. In the
latter case, M would again by regular of prime degree by Proposition 2.4.
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Therefore, the first case holds and M is 2-transitive. Once again, there exists
x ∈ M such that ∆g

1 = ∆x
1 and the proof is complete.
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