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Speaker’s Qualifications

Cayley-Sudoku Tables–Expert

Latin Squares, Orthogonality, Magic
Squares–Dilettante
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Cayley-Sudoku Tables

Definition
A Sudoku table is an n ×n array partitioned into rectangular blocks
of some fixed size such that each of n symbols appear exactly once in
each row, each column, and each block.

(In the ubiquitous Sudoku puzzle, the array is 9×9; the blocks are
3×3; and the symbols are the numbers 1 through 9.)

Any Cayley table is a (bordered) Latin square, so it is 2/3 sudoku.

Definition
A Cayley-Sudoku table [C-S Table] is a Cayley table which is also a
(bordered) Sudoku table.
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Example: Z9

0 3 6 1 4 7 2 5 8

0 0 3 6 1 4 7 2 5 8
1 1 4 7 2 5 8 3 6 0
2 2 5 8 3 6 0 4 7 1
3 3 6 0 4 7 1 5 8 2
4 4 7 1 5 8 2 6 0 3
5 5 8 2 6 0 3 7 1 4
6 6 0 3 7 1 4 8 2 5
7 7 1 4 8 2 5 0 3 6
8 8 2 5 0 3 6 1 4 7

A Cayley-Sudoku Table for Z9 := {0,1,2,3,4,5,6,7,8} under addition
mod 9
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Example: D4

() (1,2,3,4) (1,3)(2,4) (1,4,3,2) (1,4)(2,3) (1,3) (1,2)(3,4) (2,4)

() () (1,2,3,4) (1,3)(2,4) (1,4,3,2) (1,4)(2,3) (1,3) (1,2)(3,4) (2,4)
(1,2)(3,4) (1,2)(3,4) (1,3) (1,4)(2,3) (2,4) (1,3)(2,4) (1,2,3,4) () (1,4,3,2)
(1,2,3,4) (1,2,3,4) (1,3)(2,4) (1,4,3,2) () (1,3) (1,2)(3,4) (2,4) (1,4)(2,3)

(2,4) (2,4) (1,2)(3,4) (1,3) (1,4)(2,3) (1,4,3,2) (1,3)(2,4) (1,2,3,4) ()
(1,3)(2,4) (1,3)(2,4) (1,4,3,2) () (1,2,3,4) (1,2)(3,4) (2,4) (1,4)(2,3) (1,3)
(1,4)(2,3) (1,4)(2,3) (2,4) (1,2)(3,4) (1,3) () (1,4,3,2) (1,3)(2,4) (1,2,3,4)
(1,4,3,2) (1,4,3,2) () (1,2,3,4) (1,3)(2,4) (2,4) (1,4)(2,3) (1,3) (1,2)(3,4)

(1,3) (1,3) (1,4)(2,3) (2,4) (1,2)(3,4) (1,2,3,4) () (1,4,3,2) (1,3)(2,4)

A Cayley-Sudoku Table for D4, dihedral group of order 8
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How the Z9 Cayley-Sudoku table was made:
Column Labels

0 3 6 1 4 7 2 5 8

0 0 3 6 1 4 7 2 5 8
1 1 4 7 2 5 8 3 6 0
2 2 5 8 3 6 0 4 7 1
3 3 6 0 4 7 1 5 8 2
4 4 7 1 5 8 2 6 0 3
5 5 8 2 6 0 3 7 1 4
6 6 0 3 7 1 4 8 2 5
7 7 1 4 8 2 5 0 3 6
8 8 2 5 0 3 6 1 4 7

Consider the subgroup 〈3〉 = {0,3,6}. The column labels of each
block [0,3,6] = [0,3,6]+0 , [1,4,7] = [0,3,6]+1 and

[2,5,8] = [0,3,6]+2 are right cosets of the subgroup.
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Row Labels

0 3 6 1 4 7 2 5 8

0 0 3 6 1 4 7 2 5 8
1 1 4 7 2 5 8 3 6 0
2 2 5 8 3 6 0 4 7 1
3 3 6 0 4 7 1 5 8 2
4 4 7 1 5 8 2 6 0 3
5 5 8 2 6 0 3 7 1 4
6 6 0 3 7 1 4 8 2 5
7 7 1 4 8 2 5 0 3 6
8 8 2 5 0 3 6 1 4 7

The row labels of each block are complete sets of left coset
representatives, i.e. one element from each left coset.
0+ [0,3,6] = [0,3,6]

1+ [0,3,6] = [1,4,7]

2+ [0,3,6] = [2,5,8]
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Generalization

Theorem ( J. Dénes 1967; J. Carmichael, K. Schloeman, M. Ward 2010 )
Let G be a finite group. Assume H is a subgroup of G. Let
H g1, H g2, . . . , H gn be the distinct right cosets of H in G and let
T1,T2, . . . ,Tk partition G into complete sets of left coset
representatives [CSLCR] of H in G. The following layout gives a
Cayley-Sudoku table.

H g1 H g2 . . . H gn

T1

T2
...

Tk

We call this a Cayley-Sudoku table based on H .

Cayley-Sudoku tables exist for every group based on any subgroup.
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Ï In this talk, order matters. We regard cosets and CSLCR as
(ordered) lists, denoted [ ].

Ï Our Cayley-Sudoku tables are made this way.

[H g1] [H g2] . . . [H gn]

[T1]
[T2]

...
[Tk ]
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Inspiration

In constructing mutually orthogonal sets of sudoku and magic
sudoku tables, Pedersen & Vis (College Math. J. 2009) and Lorch
(Amer. Math. Monthly 2012) re-rediscovered this construction (for
finite fields, heavily disguised).

Ï What about orthogonal Cayley-Sudoku tables?

Ï In what sense might a Cayley-Sudoku table be magic?
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Orthogonal Mates & An Old Question

Definition
A Latin square is an n ×n array in which each of n symbols appears
exactly once in each row and in each column.

Definition
Two Latin squares are orthogonal, or are orthogonal mates,
provided each ordered pair of symbols occurs exactly once when the
squares are superimposed.

Old Question
The Cayley (i.e. operation) table of any finite group is a (bordered)
Latin square.

Which Cayley tables have orthogonal mates?
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Example

These Cayley tables of Z3 := {0,1,2} under addition modulo 3 are
orthogonal mates.

0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

0 1 2

0 0 1 2
2 2 0 1
1 1 2 0

0 1 2
1 2 0
2 0 1

0 1 2
2 0 1
1 2 0

00 11 22
12 20 01
21 02 10
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Non-example

These Cayley tables of Z3 := {0,1,2} are not orthogonal mates.

0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

0 2 1

0 0 2 1
2 2 1 0
1 1 0 2

0 1 2
1 2 0
2 0 1

0 2 1
2 1 0
1 0 2

�� ��00 12 21

12 21
�� ��00

21
�� ��00 12
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Answers to the Old Question

Definition
A complete mapping of a group G is a bijection θ : G →G for which
the mapping η : G →G where η(x) = xθ(x) is also a bijection.

Theorem
The Cayley table of a finite group G has an orthogonal mate iff G
admits a complete mapping (i.e. G is admissible).

Hall-Paige Conjecture (Theorem circa 2009)

A finite group G has a complete map iff G has trivial or non-cyclic
Sylow 2-subgroups.
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Orthogonal Cayley-Sudoku Tables?

Given a Cayley-Sudoku table based on a subgroup H is there an
orthogonal mate that is also a Cayley-Sudoku tables based on H?
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Example

() (1,2,3,4) (1,3)(2,4) (1,4,3,2) (1,4)(2,3) (1,3) (1,2)(3,4) (2,4)

() () (1,2,3,4) (1,3)(2,4) (1,4,3,2) (1,4)(2,3) (1,3) (1,2)(3,4) (2,4)
(1,2)(3,4) (1,2)(3,4) (1,3) (1,4)(2,3) (2,4) (1,3)(2,4) (1,2,3,4) () (1,4,3,2)
(1,2,3,4) (1,2,3,4) (1,3)(2,4) (1,4,3,2) () (1,3) (1,2)(3,4) (2,4) (1,4)(2,3)

(2,4) (2,4) (1,2)(3,4) (1,3) (1,4)(2,3) (1,4,3,2) (1,3)(2,4) (1,2,3,4) ()
(1,3)(2,4) (1,3)(2,4) (1,4,3,2) () (1,2,3,4) (1,2)(3,4) (2,4) (1,4)(2,3) (1,3)
(1,4)(2,3) (1,4)(2,3) (2,4) (1,2)(3,4) (1,3) () (1,4,3,2) (1,3)(2,4) (1,2,3,4)
(1,4,3,2) (1,4,3,2) () (1,2,3,4) (1,3)(2,4) (2,4) (1,4)(2,3) (1,3) (1,2)(3,4)

(1,3) (1,3) (1,4)(2,3) (2,4) (1,2)(3,4) (1,2,3,4) () (1,4,3,2) (1,3)(2,4)

() (1,2,3,4) (1,3)(2,4) (1,4,3,2) (1,4)(2,3) (1,3) (1,2)(3,4) (2,4)

() () (1,2,3,4) (1,3)(2,4) (1,4,3,2) (1,4)(2,3) (1,3) (1,2)(3,4) (2,4)
(2,4) (2,4) (1,2)(3,4) (1,3) (1,4)(2,3) (1,4,3,2) (1,3)(2,4) (1,2,3,4) ()

(1,4,3,2) (1,4,3,2) () (1,2,3,4) (1,3)(2,4) (2,4) (1,4)(2,3) (1,3) (1,2)(3,4)
(1,2)(3,4) (1,2)(3,4) (1,3) (1,4)(2,3) (2,4) (1,3)(2,4) (1,2,3,4) () (1,4,3,2)
(1,4)(2,3) (1,4)(2,3) (2,4) (1,2)(3,4) (1,3) () (1,4,3,2) (1,3)(2,4) (1,2,3,4)
(1,2,3,4) (1,2,3,4) (1,3)(2,4) (1,4,3,2) () (1,3) (1,2)(3,4) (2,4) (1,4)(2,3)

(1,3) (1,3) (1,4)(2,3) (2,4) (1,2)(3,4) (1,2,3,4) () (1,4,3,2) (1,3)(2,4)
(1,3)(2,4) (1,3)(2,4) (1,4,3,2) () (1,2,3,4) (1,2)(3,4) (2,4) (1,4)(2,3) (1,3)

Orthogonal Cayley-Sudoku Tables for D4 based on
{(), (1,2,3,4), (1,3)(2,4), (1,4,3,2)}.
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“θ−1 Construction”

Observation ( MW 2013 )
Let G be a finite group. Assume H is a subgroup of G. Let
H g1, H g2, . . . , H gn be the distinct right cosets of H in G and let
T1,T2, . . . ,Tk partition G into CSLCR of H in G. Further assume θ is a
complete mapping of G.

The following layouts give orthogonal Cayley tables where the list
θ[S]−1 := [θ(s)−1 : s ∈ [S]].

[H g1] [H g2] . . . [H gn ]

[T1]
[T2]

.

.

.
[Tk ]

[H g1] [H g2] . . . [H gn ]

θ[T1]−1

θ[T2]−1

.

.

.

θ[Tk ]−1

And they are orthogonal Cayley-Sudoku tables provided θ[T1]−1,
θ[T2]−1, . . . , θ[Tk ]−1 still partition G into CSLCR of H in G.
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Questions about Orthogonal Cayley-Sudoku Tables

Ï For any group having a complete mapping does there exist a
subgroup H and a partition into CSLCR Cayley-Sudoku table
for which the θ−1 Construction yields a pair of orthogonal
Cayley-Sudoku tables based on H?
(So far, yes.)

Ï Is there a characterization (along the lines of Hall-Paige) of
groups and subgroups for which orthogonal Cayley-Sudoku
tables based on those subgroups exist?
(G has orthogonal C-S tables based on H iff G has trivial or
non-cyclic Sylow 2-subgroups and H is ????)

Ï How many mutually orthogonal Cayley-Sudoku tables can a
group have?
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Definition
A Magic Cayley-Sudoku table is a Cayley-Sudoku table in which the
blocks are magic squares, that is, the blocks are square and the group
product (sum) of the elements in every row, column, and diagonal is
the same group element, called the magic constant.

? ? · · · ? →
? ? · · · ? →
...

...
...

...
? ? · · · ? →

↙ ↓ ↓ ·· · ↓ ↘

All products indicated by the arrows in the indicated directions are the same.
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Example

The Z9 Cayley-Sudoku table is (irreparably) not magic.

00 10 20 01 11 21 02 12 22

00 00 10 20 01 11 21 02 12 22
01 01 11 21 02 12 22 00 10 20
02 02 12 22 00 10 20 01 11 21
10 10 20 00 11 21 01 12 22 02
11 11 21 01 12 22 02 10 20 00
12 12 22 02 10 20 00 11 21 01
20 20 00 10 21 01 11 22 02 12
21 21 01 11 22 02 12 20 00 10
22 22 02 12 20 00 10 21 01 11

A Magic Cayley-Sudoku Table for Z3 ×Z3 with magic constant 00
( 00 = (0,0), 10 = (1,0), etc. )
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Specializations for Magic Cayley-Sudoku Tables

Ï Let H = {h1,h2, . . . ,hk } and let T be one CSLCR.
Then T h1,T h2, . . . ,T hk partition G into CSLCR.

Ï When H is a normal subgroup, we take [T ] as our right coset
representatives for the columns.

Ï Our Magic Cayley-Sudoku tables are made this way.

[H t1] [H t2] . . . [H tn]

[T h1]
[T h2]

...
[T hk ]
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Magic Cayley-Sudoku Table Construction
(RM & MW 2013)

Ï G is a group of order k2 and H ≤G of order k.

Ï exp(G) divides k and H ≤ Z (G).

Ï There exists an ordering [H ] = [h1,h2, . . . ,hk ] where
k∏

j=1
h j = 1

(Trivial Product Property).
Ï There exists a CSLCR [T ] = [t1, t2, . . . , tk ] of H in G such that for

every t ∈ T ,
k∏

j=1
(t j t ) = 1 (Magic Shuffle Property).

Ï Then the following layout gives a Magic Cayley-Sudoku Table
with Magic Constant 1. (In fact, pandiagonal magic.)

[H t1] [H t2] . . . [H tn]

[T h1]
[T h2]

...
[T hk ]
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The Main Diagonal Product in Typical Block

Write out a typical block
[H t ]

[T h]

h1t h2t . . . hk t

t1h (t1h)(h1t )
t2h (t2h)(h2t )

...
. . .

tk h (tk h)(hk t )

Multiply the main diagonal

k∏
j=1

(t j h)(h j t ) = hk

(
k∏

j=1
h j

)(
k∏

j=1
(t j t )

)
= 1

using h,h j ∈ H ≤ Z (G), exp(G) divides k, Trivial Product Property, &
Magic Shuffle Property.
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Observation
An abelian group has the Trivial Product Property iff it has trivial or
non-cyclic Sylow 2-subgroups.

In the construction, H ≤ Z (G), so the Trivial Product Property is just
another way of saying H has trivial or non-cyclic Sylow
2-subgroups.
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Application: Abelian Groups

Ï Let G be an abelian group of order k2 and H ≤G of order k.

Ï exp(G) divides k and H ≤ Z (G) (redundant)

Ï H has the Trivial Product Property.

Ï (?) G/H has the Trivial Product Property.
(I.e. H and G/H have trivial or non-cyclic Sylow 2-subgroups.)

Ï Then the Magic Shuffle Property is equivalent to (?) (easy).

Ï So . . . there is a Magic Cayley-Sudoku Table of G based on H .

Ï (Z9 and Z2 ×Z2 show we cannot drop the exponent or Trivial
Product Property conditions.)
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Application: p-Groups [Dedicated to LCK]

Ï Let G := E ×Zp where E is extra special of order p3, p an odd
prime.

Ï Then |G| = (p2)2, |Z (G)| = p2,

Ï exp(G) divides p2 (and Z (G) ≤ Z (G) !),

Ï Z (G) has the Trivial Product Property, and

Ï [T ] = [(bi a j ,1)] ordered lexicographically on ( j , i ) with
j , i ∈ [0,1, . . . p −1] is a CSLCR with the Magic Shuffle Property,
where E =< a,b : ap2 = bp = 1, ab = a1+p > or
< a,b,c : ap = bp = cp = 1,[a,c] = [b,c] = 1,[a,b] = c >

Ï So . . . there is a Magic Cayley-Sudoku Table of G based on Z (G).

53 / 72



Application: p-Groups [Dedicated to LCK]

Ï Let G := E ×Zp where E is extra special of order p3, p an odd
prime.

Ï Then |G| = (p2)2, |Z (G)| = p2,

Ï exp(G) divides p2 (and Z (G) ≤ Z (G) !),

Ï Z (G) has the Trivial Product Property, and

Ï [T ] = [(bi a j ,1)] ordered lexicographically on ( j , i ) with
j , i ∈ [0,1, . . . p −1] is a CSLCR with the Magic Shuffle Property,
where E =< a,b : ap2 = bp = 1, ab = a1+p > or
< a,b,c : ap = bp = cp = 1,[a,c] = [b,c] = 1,[a,b] = c >

Ï So . . . there is a Magic Cayley-Sudoku Table of G based on Z (G).

54 / 72



Application: p-Groups [Dedicated to LCK]

Ï Let G := E ×Zp where E is extra special of order p3, p an odd
prime.

Ï Then |G| = (p2)2, |Z (G)| = p2,

Ï exp(G) divides p2 (and Z (G) ≤ Z (G) !),

Ï Z (G) has the Trivial Product Property, and

Ï [T ] = [(bi a j ,1)] ordered lexicographically on ( j , i ) with
j , i ∈ [0,1, . . . p −1] is a CSLCR with the Magic Shuffle Property,
where E =< a,b : ap2 = bp = 1, ab = a1+p > or
< a,b,c : ap = bp = cp = 1,[a,c] = [b,c] = 1,[a,b] = c >

Ï So . . . there is a Magic Cayley-Sudoku Table of G based on Z (G).

55 / 72



Application: p-Groups [Dedicated to LCK]

Ï Let G := E ×Zp where E is extra special of order p3, p an odd
prime.

Ï Then |G| = (p2)2, |Z (G)| = p2,

Ï exp(G) divides p2 (and Z (G) ≤ Z (G) !),

Ï Z (G) has the Trivial Product Property, and

Ï [T ] = [(bi a j ,1)] ordered lexicographically on ( j , i ) with
j , i ∈ [0,1, . . . p −1] is a CSLCR with the Magic Shuffle Property,
where E =< a,b : ap2 = bp = 1, ab = a1+p > or
< a,b,c : ap = bp = cp = 1,[a,c] = [b,c] = 1,[a,b] = c >

Ï So . . . there is a Magic Cayley-Sudoku Table of G based on Z (G).

56 / 72



Application: p-Groups [Dedicated to LCK]

Ï Let G := E ×Zp where E is extra special of order p3, p an odd
prime.

Ï Then |G| = (p2)2, |Z (G)| = p2,

Ï exp(G) divides p2 (and Z (G) ≤ Z (G) !),

Ï Z (G) has the Trivial Product Property, and

Ï [T ] = [(bi a j ,1)] ordered lexicographically on ( j , i ) with
j , i ∈ [0,1, . . . p −1] is a CSLCR with the Magic Shuffle Property,
where E =< a,b : ap2 = bp = 1, ab = a1+p > or
< a,b,c : ap = bp = cp = 1,[a,c] = [b,c] = 1,[a,b] = c >

Ï So . . . there is a Magic Cayley-Sudoku Table of G based on Z (G).

57 / 72



Application: p-Groups [Dedicated to LCK]

Ï Let G := E ×Zp where E is extra special of order p3, p an odd
prime.

Ï Then |G| = (p2)2, |Z (G)| = p2,

Ï exp(G) divides p2 (and Z (G) ≤ Z (G) !),

Ï Z (G) has the Trivial Product Property, and

Ï [T ] = [(bi a j ,1)] ordered lexicographically on ( j , i ) with
j , i ∈ [0,1, . . . p −1] is a CSLCR with the Magic Shuffle Property,
where E =< a,b : ap2 = bp = 1, ab = a1+p > or
< a,b,c : ap = bp = cp = 1,[a,c] = [b,c] = 1,[a,b] = c >

Ï So . . . there is a Magic Cayley-Sudoku Table of G based on Z (G).

58 / 72



Application: Every group embeds in a group having a
Magic Cayley-Sudoku Table

Ï Let G := F ×F ×Zm ×Zm where F := { f1, f2, . . . , fm} is an
arbitrary finite group of order m.

Ï Let H := 1×1×Zm ×Zm .

Ï Then |G| = (m2)2, |H | = m2,

Ï exp(G) divides m and H ≤ Z (G),

Ï H has the Trivial Product Property, and

Ï [T ] := [( fi , f j ,1,1)] ordered lexicographically on (i , j ) with
i , j ∈ [0,1, . . .m] is a CSLCR with the Magic Shuffle Property.

Ï So . . . there is a Magic Cayley-Sudoku Table of G based on H .
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Questions about Magic Cayley-Sudoku Tables

Ï Other constructions?

Ï What is the minimum number of entries that determine a
(Magic) Cayley-Sudoku Table?

Ï Can interesting puzzles be made?

Ï Are there any non-recreational uses?

66 / 72



Questions about Magic Cayley-Sudoku Tables

Ï Other constructions?

Ï What is the minimum number of entries that determine a
(Magic) Cayley-Sudoku Table?

Ï Can interesting puzzles be made?

Ï Are there any non-recreational uses?

67 / 72



Questions about Magic Cayley-Sudoku Tables

Ï Other constructions?

Ï What is the minimum number of entries that determine a
(Magic) Cayley-Sudoku Table?

Ï Can interesting puzzles be made?

Ï Are there any non-recreational uses?

68 / 72



Questions about Magic Cayley-Sudoku Tables

Ï Other constructions?

Ï What is the minimum number of entries that determine a
(Magic) Cayley-Sudoku Table?

Ï Can interesting puzzles be made?

Ï Are there any non-recreational uses?

69 / 72



Bonus Slide: Orthogonal Magic Cayley-Sudoku Tables!

00 12 21 11 20 02 22 01 10

00 00 12 21 11 20 02 22 01 10
20 20 02 11 01 10 22 12 21 00
10 10 22 01 21 00 12 02 11 20
12 12 21 00 20 02 11 01 10 22
02 02 11 20 10 22 01 21 00 12
22 22 01 10 00 12 21 11 20 02
21 21 00 12 02 11 20 10 22 01
11 11 20 02 22 01 10 00 12 21
01 01 10 22 12 21 00 20 02 11

00 12 21 11 20 02 22 01 10

00 00 12 21 11 20 02 22 01 10
10 10 22 01 21 00 12 02 11 20
20 20 02 11 01 10 22 12 21 00
21 21 00 12 02 11 20 10 22 01
01 01 10 22 12 21 00 20 02 11
11 11 20 02 22 01 10 00 12 21
12 12 21 00 20 02 11 01 10 22
22 22 01 10 00 12 21 11 20 02
02 02 11 20 10 22 01 21 00 12
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Addendum

Theorem ( Vaughn-Lee & Wanless (2003) )
For any finite group G, G has the Trivial Product Property iff G has
trivial or non-cyclic Sylow 2-subgroups.

With the Hall-Paige conjecture, the above are equivalent to the
admissibility of G , the existence of an orthogonal mate to the
Cayley table of G .
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