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Definition
A Sudoku table is an n ×n array partitioned into rectangular blocks
of some fixed size such that each of n symbols appear exactly once in
each row, each column, and each block.

In the standard Sudoku puzzle, the array is 9×9, the blocks are 3×3
and the symbols are the numbers 1 through 9.

9 3 6 1 4 7 8 2 5
1 4 7 2 5 8 9 3 6
8 2 5 9 3 6 7 1 4
3 6 9 4 7 1 2 5 8
4 7 1 5 8 2 3 6 9
2 5 8 3 6 9 1 4 7
6 9 3 7 1 4 5 8 2
7 1 4 8 2 5 6 9 3
5 8 2 6 9 3 4 7 1

A Standard Sudoku Table
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Definition
A Cayley table is an operation table for a finite group.

Definition
A Cayley-Sudoku table is a Cayley table which is also a (bordered)
Sudoku table.

9 3 6 1 4 7 2 5 8

9 9 3 6 1 4 7 2 5 8
1 1 4 7 2 5 8 3 6 9
2 2 5 8 3 6 9 4 7 1
3 3 6 9 4 7 1 5 8 2
4 4 7 1 5 8 2 6 9 3
5 5 8 2 6 9 3 7 1 4
6 6 9 3 7 1 4 8 2 5
7 7 1 4 8 2 5 9 3 6
8 8 2 5 9 3 6 1 4 7

A Cayley-Sudoku Table for Z9 (with 9=0)
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Definition
A Magic Cayley-Sudoku table is a Cayley-Sudoku table in which the
blocks are magic squares, that is, the blocks are square and the group
sum of the elements in every row, column, and diagonal is the same
group element, called the magic constant.

? ? · · · ? →
? ? · · · ? →
...

...
...

...
? ? · · · ? →

↙ ↓ ↓ ·· · ↓ ↘

All sums indicated by the arrows are the same.
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Non-example

9 3 6 1 4 7 2 5 8

9 9 3 6 1 4 7 2 5 8
1 1 4 7 2 5 8 3 6 9
2 2 5 8 3 6 9 4 7 1
3 3 6 9 4 7 1 5 8 2
4 4 7 1 5 8 2 6 9 3
5 5 8 2 6 9 3 7 1 4
6 6 9 3 7 1 4 8 2 5
7 7 1 4 8 2 5 9 3 6
8 8 2 5 9 3 6 1 4 7

NOT a Magic Cayley-Sudoku Table for Z9

(compare row sums in the first block)
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Example

00 10 20 01 11 21 02 12 22

00 00 10 20 01 11 21 02 12 22
01 01 11 21 02 12 22 00 10 20
02 02 12 22 00 10 20 01 11 21
10 10 20 00 11 21 01 12 22 02
11 11 21 01 12 22 02 10 20 00
12 12 22 02 10 20 00 11 21 01
20 20 00 10 21 01 11 22 02 12
21 21 01 11 22 02 12 20 00 10
22 22 02 12 20 00 10 21 01 11

A Magic Cayley-Sudoku Table for Z3 ⊕Z3 with magic constant 00
( 00 = (0,0), 10 = (1,0), etc. )
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How was it made?

Take the subgroup H :=< 10 >= {00,10,20}.

Take the complete set of coset representatives T := {00,01,02}

Arrange the table like this.

H+00︷ ︸︸ ︷ H+01︷ ︸︸ ︷ H+02︷ ︸︸ ︷
00 10 20 01 11 21 02 12 22

00 00 10 20 01 11 21 02 12 22
T +00 01 01 11 21 02 12 22 00 10 20

02 02 12 22 00 10 20 01 11 21
10 10 20 00 11 21 01 12 22 02

T +10 11 11 21 01 12 22 02 10 20 00
12 12 22 02 10 20 00 11 21 01
20 20 00 10 21 01 11 22 02 12

T +20 21 21 01 11 22 02 12 20 00 10
22 22 02 12 20 00 10 21 01 11
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That arrangement guarantees a Cayley-Sudoku Table.
(Carmichael, Schloeman & Ward, Math. Mag. April 2010, or
Theorem 1.5.5 in J. Dénes and A. D. Keedwell, Latin Squares and
Their Applications, 1974.)

What makes the magic?

Ï the sum of the elements in H is 00

Ï the sum of the elements of T is 00

Ï 3 · x := x +x +x = 00 for every x ∈Z3 ⊕Z3

(the exponent of Z3 ⊕Z3 is 3)
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Typical Column Sum

? g ?

...
00+h ? 00+h + g ?

01+h · · · ? 01+h + g ? · · ·
02+h ? 02+h + g ?

...

column sum = (00+01+02)+3 ·h +3 · g = 00+00+00 = 00
(using the sum of elements of T is 00 and exponent is 3)

Row sums use the exponent again and that the sum of elements of
H is 00. Diagonal sums use everything.
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Definition
A finite abelian (commutative) group is a zero-sum group provided
the sum of its elements is 0 (the group identity).

(Aside: A finite abelian group is a zero-sum group if and only if it is
has odd order or has a noncyclic Sylow 2-subgroup.)
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Theorem
Suppose G is an abelian group of order n2 and H = {h1,h2, . . . ,hn} is
subgroup of G of order n. Assume exp(G) divides n; and H and G/H
are zero-sum groups. Then there exists a set T = {t1, t2, . . . , tn} of coset
representatives of H in G whose sum is 0 (the group identity).
Furthermore, the following layout produces a Magic Cayley-Sudoku
Table with magic constant 0.

H + t1 H + t2 · · · H + tn

T +h1

T +h2
...

T +hn

Examples (Z9 and Z2 ⊕Z2, respectively) show the exponent and
zero-sum conditions cannot be dropped.
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Another (Half) Example

00 20 02 22 10 30 12 32 01 21 03 23 33 13 31 11

00 00 20 02 22 10 30 12 32 01 21 03 23 33 13 31 11
10 10 30 12 32 20 00 22 02 11 31 13 33 03 23 01 21
01 01 21 03 23 11 31 13 33 02 22 00 20 30 10 32 12
33 33 13 31 11 13 23 01 21 30 10 32 12 22 02 20 00
20 20 00 22 12 30 10 32 12 21 01 23 03 13 33 11 31
30 30 10 32 12 00 20 02 22 31 11 13 33 23 03 21 01
21 21 01 23 03 31 11 33 13 22 02 20 00 10 30 12 32
13 13 33 11 31 23 03 21 01 10 30 12 32 02 22 00 20

and so forth . . .

Magic Cayley-Sudoku Table for Z4 ⊕Z4 with magic constant 00
H = 〈2〉⊕〈2〉

T = {00,10,01,33}
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Open Questions

Ï Are there other constructions?

Ï What about non-abelian groups?
(We have an example of order 81, but no theorem.)

Ï What is the minimum number of entries that determine a
Magic Cayley-Sudoku Table?

Ï Can interesting puzzles be made?
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Addendum – 23 January 2013

Zero sum groups have interesting connections. Consider these
classes of finite (not necessarily abelian) groups.

C1 := (G : the sum of the elements of G in some order is 0)
C2 := (G : G has trivial or non-cyclic Sylow 2-subgroups)
C3 := (G : the Cayley Table of G has an orthogonal mate)
C4 := (G : G is admissible, i.e. admits a complete mapping)

We proved C1 =C2 in the abelian case. It is known that C3 =C4

(“well-known”) and that C4 ⊆C1 (Paige 1951). The famous
Hall-Paige Conjecture is C2 ⊆C4. Evidently, using the classification
of finite simple groups, all these classes are now known to be
equal.1

We wonder if equality of those classes might shed some light on
how to generalize our construction to non-abelian groups.

1But take that with a grain of salt.
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