Counting Magic Cayley-Sudoku Tables

Michael Ward Western Oregon University

Zassenhaus Group Theory Conference May 2015

In memory of Wolfgang Kappe

► Counting Magic Sudoku Tables for \mathbb{Z}_9 [Lorch & Weld 2011]

- Counting Magic Sudoku Tables for \mathbb{Z}_9 [Lorch & Weld 2011]
- ► Counting Magic Cayley-Sudoku Tables for \mathbb{Z}_9

- ► Counting Magic Sudoku Tables for Z₉ [Lorch & Weld 2011]
- Counting Magic Cayley-Sudoku Tables for \mathbb{Z}_9
- ► Counting Magic Cayley-Sudoku Tables for $\mathbb{Z}_3 \times \mathbb{Z}_3$

- ► Counting Magic Sudoku Tables for Z₉ [Lorch & Weld 2011]
- ► Counting Magic Cayley-Sudoku Tables for Z₉
- Counting Magic Cayley-Sudoku Tables for $\mathbb{Z}_3 \times \mathbb{Z}_3$
- ► Mutually Orthogonal Sets of Magic Sudoku Tables for Z₉ [Lorch & Weld 2011]

- Counting Magic Sudoku Tables for \mathbb{Z}_9 [Lorch & Weld 2011]
- ► Counting Magic Cayley-Sudoku Tables for Z₉
- Counting Magic Cayley-Sudoku Tables for $\mathbb{Z}_3 \times \mathbb{Z}_3$
- ► Mutually Orthogonal Sets of Magic Sudoku Tables for Z₉ [Lorch & Weld 2011]
- ▶ Mutually Orthogonal Sets of Magic Cayley-Sudoku Tables for $\mathbb{Z}_3 \times \mathbb{Z}_3$

Definitions

A **Sudoku Table** for $\mathbb{Z}_9 = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$ is a 9×9 array partitioned into 3×3 blocks in which the elements of \mathbb{Z}_9 appear exactly once in each row and column (Latin square) and in each block (sudoku puzzle).

Such a table is **Magic** if the row, column, and diagonal sums in each 3×3 block are zero mod 9.

Magic Sudoku Table for \mathbb{Z}_9

Example

1	8	0	7	5	6	4	2	3
2	3	4	8	0	1	5	6	7
6	7	5	3	4	2	0	1	8
8	4	6	5	1	3	2	7	0
7	0	2	4	6	8	1	3	5
3	5	1	0	2	7	6	8	4
5	1	3	2	7	0	8	4	6
4	6	8	1	3	5	7	0	2
0	2	7	6	8	4	3	5	1

Sales Pitch & Question

9 × 9 Latin Square Count

"The exact number of Latin squares of order 9 (approximately 5.52×10^{27}) wasn't known until 1975, and the exact number for orders twelve and larger is currently unknown." [Lorch & Weld]

Sales Pitch & Question

9 × 9 Latin Square Count

"The exact number of Latin squares of order 9 (approximately 5.52×10^{27}) wasn't known until 1975, and the exact number for orders twelve and larger is currently unknown." [Lorch & Weld]

Sudoku Table Count

The exact number of Sudoku Tables for \mathbb{Z}_9 is approximately 6.67×10^{21} , evidently known only via computer.

Sales Pitch & Question

9 × 9 Latin Square Count

"The exact number of Latin squares of order 9 (approximately 5.52×10^{27}) wasn't known until 1975, and the exact number for orders twelve and larger is currently unknown." [Lorch & Weld]

Sudoku Table Count

The exact number of Sudoku Tables for \mathbb{Z}_9 is approximately 6.67×10^{21} , evidently known only via computer.

Question

How many Magic Sudoku Tables are there for \mathbb{Z}_9 ?

• Let \mathcal{M} be the set of Magic Sudoku Tables for \mathbb{Z}_9 .

- Let \mathcal{M} be the set of Magic Sudoku Tables for \mathbb{Z}_9 .
- ► Find a group acting on *M* with few orbits. Add up the orbit lengths.

- Let \mathcal{M} be the set of Magic Sudoku Tables for \mathbb{Z}_9 .
- ► Find a group acting on *M* with few orbits. Add up the orbit lengths.
- L & W construct a group of order $2^{11}3^4$ with 2 orbits.

- Let \mathcal{M} be the set of Magic Sudoku Tables for \mathbb{Z}_9 .
- ► Find a group acting on *M* with few orbits. Add up the orbit lengths.
- L & W construct a group of order $2^{11}3^4$ with 2 orbits.
- Stabilizers have orders $2^2 3^2$ and $2 \cdot 3$.

- Let \mathcal{M} be the set of Magic Sudoku Tables for \mathbb{Z}_9 .
- ► Find a group acting on *M* with few orbits. Add up the orbit lengths.
- L & W construct a group of order $2^{11}3^4$ with 2 orbits.

• Stabilizers have orders
$$2^2 3^2$$
 and $2 \cdot 3$.

•
$$|\mathcal{M}| = \frac{2^{11}3^4}{2^23^2} + \frac{2^{11}3^4}{2\cdot 3} = 32,256.$$

Definitions

A **Cayley-Sudoku Table** for \mathbb{Z}_9 [C-S Table] is a Cayley table which is also a (bordered) Sudoku table.

	0	3	6	1	4	7	2	5	8
0	0	3	6	1	4	7	2	5	8
1	1	4	7	2	5	8	3	6	0
2	2	5	8	3	6	0	4	7	1
3	3	6	0	4	7	1	5	8	2
4	4	7	1	5	8	2	6	0	3
5	5	8	2	6	0	3	7	1	4
6	6	0	3	7	1	4	8	2	5
7	7	1	4	8	2	5	0	3	6
8	8	2	5	0	3	6	1	4	7

Such a table is **Magic** if the row, column, and diagonal sums in each 3×3 block is zero mod 9.

► How many Magic Cayley-Sudoku Tables [MC-S Tables] for \mathbb{Z}_9 ?

Counting

- ► How many Magic Cayley-Sudoku Tables [MC-S Tables] for \mathbb{Z}_9 ?
- ► Lemma None!

Counting

- ► How many Magic Cayley-Sudoku Tables [MC-S Tables] for \mathbb{Z}_9 ?
- Lemma None!
- Switch groups to $\mathbb{Z}_3 \times \mathbb{Z}_3 := \mathbb{Z}_3^2$.

Constructing Magic Cayley-Sudoku Tables for $\mathbb{Z}_3 \times \mathbb{Z}_3$

Choose any two complementary subgroups of order 3, $U = \langle u \rangle$ and $V = \langle v \rangle$, $U \times V = \mathbb{Z}_3 \times \mathbb{Z}_3$ (multiplicative notation).

"Large columns" indexed by cosets of *U*. Columns within each large column labeled with elements of its coset.

Large rows and rows similarly labeled using cosets of V.

			U			vU			$v^2 U$	
		1	и	u^2	ν	vu	vu^2	v^2	$v^2 u$	$v^2 u^2$
	1	1	и	u^2	ν	vu	vu^2	v^2	$v^2 u$	$v^2 u^2$
V	ν	ν	vu	vu^2	v^2	$v^2 u$	$v^2 u^2$	1	и	u^2
	v^2	v^2	$v^2 u$	$v^2 u^2$	1	и	u^2	v	vu	$v u^2$
	и	и	u^2	1	vu	vu^2	v	$v^2 u$	$v^2 u^2$	v^2
Vu	vu	vu	vu^2	ν	$v^2 u$	$v^2 u^2$	v^2	u	u^2	1
	$v^2 u$	$v^2 u$	$v^2 u^2$	v^2	и	u^2	1	vu	vu^2	ν
	u^2	u^2	1	и	vu^2	v	vu	$v^2 u^2$	v^2	$v^2 u$
Vu^2	$v u^2$	vu^2	ν	vu	$v^2 u^2$	v^2	$v^2 u$	u^2	1	и
	$v^2 u^2$	$v^2 u^2$	v^2	$v^2 u$	u^2	1	и	vu ²	ν	vu

Characterization

Any permutation of the large columns [rows] yields another MC-S Table.

Within any large column [row], any permutation of the columns [rows] yields another MC-S Table.

Characterization

Any permutation of the large columns [rows] yields another MC-S Table.

Within any large column [row], any permutation of the columns [rows] yields another MC-S Table.

Theorem Every MC-S Table for \mathbb{Z}_3^2 is obtained in this way for some choice of U and V.

Any permutation of the large columns [rows] yields another MC-S Table.

Within any large column [row], any permutation of the columns [rows] yields another MC-S Table.

Theorem Every MC-S Table for \mathbb{Z}_3^2 is obtained in this way for some choice of U and V.

Any of the MC-S Tables so constructed from a given U and V we call a (U, V)-table.

Plain Counting

4	Choices for $U = \langle u \rangle$
3	Choices for $V = \langle v \rangle$
3!	Arrangements of large columns (indexed by U , vU , v^2U)
$(3!)^3$	Arrangements of columns within large columns
3!	Arrangements of large rows (indexed by V, Vu , Vu^2)
(3!) ³	Arrangements of rows within large rows
$12 \cdot (3!)^8$	Magic Cayley-Sudoku Tables for \mathbb{Z}_3^2

 $12 \cdot (3!)^8 = 20,155,392$

• $\mathcal{M} :=$ the set of MC-S Tables for for \mathbb{Z}_3^2

- $\mathcal{M} :=$ the set of MC-S Tables for for \mathbb{Z}_3^2
- C := group of permutations of large columns and columns within large columns

- $\mathcal{M} :=$ the set of MC-S Tables for for \mathbb{Z}_3^2
- C := group of permutations of large columns and columns within large columns
- ► $C \cong S_3 \wr S_3$

- $\mathcal{M} :=$ the set of MC-S Tables for for \mathbb{Z}_3^2
- C := group of permutations of large columns and columns within large columns
- $C \cong S_3 \wr S_3$
- *R* := group of permutations of large rows and rows within large rows

- $\mathcal{M} :=$ the set of MC-S Tables for for \mathbb{Z}_3^2
- C := group of permutations of large columns and columns within large columns
- $C \cong S_3 \wr S_3$
- R := group of permutations of large rows and rows within large rows
- ► $R \cong S_3 \wr S_3$

- $\mathcal{M} :=$ the set of MC-S Tables for for \mathbb{Z}_3^2
- C := group of permutations of large columns and columns within large columns
- $\blacktriangleright C \cong S_3 \wr S_3$
- R := group of permutations of large rows and rows within large rows
- $\blacktriangleright R \cong S_3 \wr S_3$
- ► L := the group of relabelings, i.e. bijections from Z²₃ to itself that preserve MC-S Tables

- $\mathcal{M} :=$ the set of MC-S Tables for for \mathbb{Z}_3^2
- C := group of permutations of large columns and columns within large columns
- $\blacktriangleright C \cong S_3 \wr S_3$
- R := group of permutations of large rows and rows within large rows
- $\blacktriangleright R \cong S_3 \wr S_3$
- ► L := the group of relabelings, i.e. bijections from Z²₃ to itself that preserve MC-S Tables
- $L \cong \operatorname{Aut}(\mathbb{Z}_3^2) \cong \operatorname{GL}(2,3)$

- $\mathcal{M} :=$ the set of MC-S Tables for for \mathbb{Z}_3^2
- C := group of permutations of large columns and columns within large columns
- $\blacktriangleright C \cong S_3 \wr S_3$
- R := group of permutations of large rows and rows within large rows
- $\blacktriangleright R \cong S_3 \wr S_3$
- ► L := the group of relabelings, i.e. bijections from Z²₃ to itself that preserve MC-S Tables
- $L \cong \operatorname{Aut}(\mathbb{Z}_3^2) \cong \operatorname{GL}(2,3)$
- Set $G = L \times C \times R \cong GL(2,3) \times (S_3 \wr S_3) \times (S_3 \wr S_3)$

- $\mathcal{M} :=$ the set of MC-S Tables for for \mathbb{Z}_3^2
- C := group of permutations of large columns and columns within large columns
- $\blacktriangleright C \cong S_3 \wr S_3$
- R := group of permutations of large rows and rows within large rows
- $\blacktriangleright R \cong S_3 \wr S_3$
- ► L := the group of relabelings, i.e. bijections from Z²₃ to itself that preserve MC-S Tables
- $L \cong \operatorname{Aut}(\mathbb{Z}_3^2) \cong \operatorname{GL}(2,3)$
- Set $G = L \times C \times R \cong GL(2,3) \times (S_3 \wr S_3) \times (S_3 \wr S_3)$
- ► $|G| = 48 \cdot (3!)^8$

Lemma *G* acts transitively on \mathcal{M} and $|G_M| = 4$ for any $M \in \mathcal{M}$.

Lemma *G* acts transitively on \mathcal{M} and $|G_M| = 4$ for any $M \in \mathcal{M}$.

Proof. Let $M_i \in \mathcal{M}$, M_i a (U_i, V_i) -table for i = 12. For some $\sigma \in GL(2, 3)$, $U_1^{\sigma} = U_2$ and $V_1^{\sigma} = V_2$ M_1^{σ} is a (U_2, V_2) -table. Permute rows and columns with an element of $C \times R$ to match M_2 .

Lemma *G* acts transitively on \mathcal{M} and $|G_M| = 4$ for any $M \in \mathcal{M}$.

Proof. Let $M_i \in \mathcal{M}$, M_i a (U_i, V_i) -table for i = 12. For some $\sigma \in GL(2, 3)$, $U_1^{\sigma} = U_2$ and $V_1^{\sigma} = V_2$ M_1^{σ} is a (U_2, V_2) -table. Permute rows and columns with an element of $C \times R$ to match M_2 .

Fix $M \in \mathcal{M}$, M_i a (U, V)-table, $U = \langle u \rangle$, $V = \langle v \rangle$. $\sigma \in GL(2,3)$, $\rho \in C \times R$, $\sigma \rho \in G_M \Rightarrow U^{\sigma} = U$, $v^{\sigma} = V \Rightarrow u^{\sigma} = u^{\pm 1}$, $v^{\sigma} = v^{\pm 1}$ For each such σ there is a unique ρ such that $\sigma \rho$ fixes M.

Lemma *G* acts transitively on \mathcal{M} and $|G_M| = 4$ for any $M \in \mathcal{M}$.

Proof. Let $M_i \in \mathcal{M}$, M_i a (U_i, V_i) -table for i = 12. For some $\sigma \in GL(2, 3)$, $U_1^{\sigma} = U_2$ and $V_1^{\sigma} = V_2$ M_1^{σ} is a (U_2, V_2) -table. Permute rows and columns with an element of $C \times R$ to match M_2 .

Fix
$$M \in \mathcal{M}$$
, M_i a (U, V) -table, $U = \langle u \rangle$, $V = \langle v \rangle$.
 $\sigma \in GL(2,3)$, $\rho \in C \times R$,
 $\sigma \rho \in G_M \Rightarrow U^{\sigma} = U$, $v^{\sigma} = V \Rightarrow u^{\sigma} = u^{\pm 1}$, $v^{\sigma} = v^{\pm 1}$
For each such σ there is a unique ρ such that $\sigma \rho$ fixes M

Corollary
$$|\mathcal{M}| = \frac{|G|}{|G_M|} = \frac{48 \cdot (3!)^8}{4} = 12 \cdot (3!)^8 = 20,155,393.$$

Orthogonality

Definition

Two Latin squares are **orthogonal** provided each ordered pair of symbols occurs exactly once when the squares are superimposed. A family of Latin squares is **mutually orthogonal** provided each pair of distinct elements are orthogonal.

Orthogonality

Definition

Two Latin squares are **orthogonal** provided each ordered pair of symbols occurs exactly once when the squares are superimposed. A family of Latin squares is **mutually orthogonal** provided each pair of distinct elements are orthogonal.

Example

These Cayley tables of \mathbb{Z}_3 *are orthogonal.*

Sales Pitch & Questions

The next Fermat problem?

"Regarding families of mutually orthogonal latin squares, it has long been known that there are at most n - 1 mutually orthogonal Latin squares of order n [i.e. $n \times n$], and that this bound is achieved when n is a prime power. However, for non-prime power orders larger than six, the largest size of a family of mutually orthogonal latin squares is unknown. This problem has been proposed by Mullen as a candidate for the 'next Fermat problem.'" [Lorch & Weld]

Sales Pitch & Questions

The next Fermat problem?

"Regarding families of mutually orthogonal latin squares, it has long been known that there are at most n - 1 mutually orthogonal Latin squares of order n [i.e. $n \times n$], and that this bound is achieved when n is a prime power. However, for non-prime power orders larger than six, the largest size of a family of mutually orthogonal latin squares is unknown. This problem has been proposed by Mullen as a candidate for the 'next Fermat problem.'" [Lorch & Weld]

So the largest size of a mutually orthogonal family of 9×9 Latin squares is 8.

Sales Pitch & Questions

The next Fermat problem?

"Regarding families of mutually orthogonal latin squares, it has long been known that there are at most n - 1 mutually orthogonal Latin squares of order n [i.e. $n \times n$], and that this bound is achieved when n is a prime power. However, for non-prime power orders larger than six, the largest size of a family of mutually orthogonal latin squares is unknown. This problem has been proposed by Mullen as a candidate for the 'next Fermat problem.'" [Lorch & Weld]

So the largest size of a mutually orthogonal family of 9×9 Latin squares is 8.

Questions

What is the largest size of a mutually orthogonal family of Sudoku Tables & Magic Sudoku Tables for \mathbb{Z}_9 ? Magic Cayley-Sudoku Tables for \mathbb{Z}_3^2 ?

Mutually Orthogonal Sets of Sudoku Tables for \mathbb{Z}_9

Theorem (Pedersen & Vis, 2009)

There exists a family of 6 mutually orthogonal Sudoku Tables for \mathbb{Z}_9 and this is the largest possible such family.

Challenge 3. Fill in the three sudoku squares below so that any two of them are orthogonal to each other. (Time goal: 2 hours)

4		6		8	9			3
7	8		1			4	5	6
1			4	5				
3	1		6		5			
			11				1.7	2
9						6	4	
		1			11		9	
5		4		9		2		
	9				1		6	

		6	4	8	9		1			
	9		8	3		2	6	4	5	
							7			
			5			8				
.]	7	8		1	2	3	4		6	1
1	2		1		6	4				
		9				1		6		
1	3				4	5	9	7		
		5	6		8	9			3	

	4	5	9			3		
	9		2	3			6	4
1			4		6		8	9
	7	8	3			6	4	
					4	8		7
							2	
5					7	2	3	1
		9	0	2			2	6
3					5			

Orthogonal Sudoku Puzzle (MAA FOCUS)

Mutually Orthogonal Sets of Magic Sudoku Tables for \mathbb{Z}_9

Theorem (Lorch & Weld)

There exists a family of 2 mutually orthogonal Magic Sudoku Tables for \mathbb{Z}_9 and this is the largest possible such family.

Mutually Orthogonal Sets of Magic-Cayley Sudoku Tables for \mathbb{Z}_3^2

Theorem

There exists a family of 6 mutually orthogonal Magic Cayley-Sudoku Tables for \mathbb{Z}_9 and this is the largest possible such family, assuming any such family can be normalized to have the same column labels.

Mutually Orthogonal Sets of Magic-Cayley Sudoku Tables for \mathbb{Z}_3^2

Theorem

There exists a family of 6 mutually orthogonal Magic Cayley-Sudoku Tables for \mathbb{Z}_9 and this is the largest possible such family, assuming any such family can be normalized to have the same column labels.

Idea of the Proof (adapted from Pedersen & Vis)

Think of \mathbb{Z}_3^2 as the additive group of GF(9). Take U = GF(3). For each $x \in GF(9) \setminus U$, Ux is a complement to U. A family of (U, Ux)-tables, one for each $x \in GF(9) \setminus U$, suitably arranged, is mutually orthogonal.

References

- J. Lorch and E. Weld, Modular Magic Sudoku, http://www.cs.bsu.edu/homepages/jdlorch/mmsarticle.pdf
- 2. G. L. Mullen, A candidate for the "next Fermat problem," *Math. Intelligencer* **17** 18-22.
- 3. R. M. Pedersen and T. L. Vis, Sets of Mutually Orthogonal Sudoku Latin Squares, *College Math. J.* **40** (2009) 174-180.