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Definitions

A Sudoku Table for Z9 = {0,1,2,3,4,5,6,7,8} is a 9×9 array
partitioned into 3×3 blocks in which the elements of Z9 appear
exactly once in each row and column (Latin square) and in each
block (sudoku puzzle).

Such a table is Magic if the row, column, and diagonal sums in each
3×3 block are zero mod 9.
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Magic Sudoku Table for Z9

Example

1 8 0 7 5 6 4 2 3
2 3 4 8 0 1 5 6 7
6 7 5 3 4 2 0 1 8
8 4 6 5 1 3 2 7 0
7 0 2 4 6 8 1 3 5
3 5 1 0 2 7 6 8 4
5 1 3 2 7 0 8 4 6
4 6 8 1 3 5 7 0 2
0 2 7 6 8 4 3 5 1
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Sales Pitch & Question

9×9 Latin Square Count

“The exact number of Latin squares of order 9 (approximately
5.52×1027) wasn’t known until 1975, and the exact number for
orders twelve and larger is currently unknown.” [Lorch & Weld]

Sudoku Table Count
The exact number of Sudoku Tables for Z9 is approximately
6.67×1021, evidently known only via computer.

Question
How many Magic Sudoku Tables are there for Z9?
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Lorch & Weld Counting

Ï Let M be the set of Magic Sudoku Tables for Z9.

Ï Find a group acting on M with few orbits. Add up the orbit
lengths.

Ï L & W construct a group of order 21134 with 2 orbits.

Ï Stabilizers have orders 2232 and 2 ·3.

Ï |M | = 21134

2232 + 21134

2 ·3
= 32,256.
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Definitions
A Cayley-Sudoku Table for Z9 [C-S Table] is a Cayley table which is
also a (bordered) Sudoku table.

0 3 6 1 4 7 2 5 8

0 0 3 6 1 4 7 2 5 8
1 1 4 7 2 5 8 3 6 0
2 2 5 8 3 6 0 4 7 1
3 3 6 0 4 7 1 5 8 2
4 4 7 1 5 8 2 6 0 3
5 5 8 2 6 0 3 7 1 4
6 6 0 3 7 1 4 8 2 5
7 7 1 4 8 2 5 0 3 6
8 8 2 5 0 3 6 1 4 7

Such a table is Magic if the row, column, and diagonal sums in each
3×3 block is zero mod 9.
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Counting

Ï How many Magic Cayley-Sudoku Tables [MC-S Tables] for Z9?

Ï Lemma None!

Ï Switch groups to Z3 ×Z3 :=Z2
3.
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Constructing Magic Cayley-Sudoku Tables for Z3 ×Z3

Choose any two complementary subgroups of order 3, U =< u >
and V =< v >, U ×V =Z3 ×Z3 (multiplicative notation).
“Large columns" indexed by cosets of U . Columns within each large
column labeled with elements of its coset.
Large rows and rows similarly labeled using cosets of V .

U vU v2U
1 u u2 v vu vu2 v2 v2u v2u2

1 1 u u2 v vu vu2 v2 v2u v2u2

V v v vu vu2 v2 v2u v2u2 1 u u2

v2 v2 v2u v2u2 1 u u2 v vu vu2

u u u2 1 vu vu2 v v2u v2u2 v2

V u vu vu vu2 v v2u v2u2 v2 u u2 1
v2u v2u v2u2 v2 u u2 1 vu vu2 v
u2 u2 1 u vu2 v vu v2u2 v2 v2u

V u2 vu2 vu2 v vu v2u2 v2 v2u u2 1 u
v2u2 v2u2 v2 v2u u2 1 u vu2 v vu
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Characterization

Any permutation of the large columns [rows] yields another MC-S
Table.
Within any large column [row], any permutation of the columns
[rows] yields another MC-S Table.

Theorem Every MC-S Table for Z2
3 is obtained in this way for some

choice of U and V .

Any of the MC-S Tables so constructed from a given U and V we call
a (U ,V )-table.
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Plain Counting

4 Choices for U =< u >
3 Choices for V =< v >
3! Arrangements of large columns (indexed by U , vU , v2U )
(3!)3 Arrangements of columns within large columns
3! Arrangements of large rows (indexed by V , V u, V u2)
(3!)3 Arrangements of rows within large rows
12 · (3!)8 Magic Cayley-Sudoku Tables for Z2

3

12 · (3!)8 = 20,155,392
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Fancy Counting à la Lorch & Weld

Ï M := the set of MC-S Tables for for Z2
3

Ï C := group of permutations of large columns and columns
within large columns

Ï C ∼= S3 oS3

Ï R := group of permutations of large rows and rows within large
rows

Ï R ∼= S3 oS3

Ï L := the group of relabelings, i.e. bijections from Z2
3 to itself

that preserve MC-S Tables

Ï L ∼= Aut(Z2
3) ∼= GL(2,3)

Ï Set G = L×C ×R ∼= GL(2,3)× (S3 oS3)× (S3 oS3)

Ï |G| = 48 · (3!)8
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Fancy Counting Continued

Lemma G acts transitively on M and |GM | = 4 for any M ∈M .

Proof. Let Mi ∈M , Mi a (Ui ,Vi )-table for i = 12.
For some σ ∈ GL(2,3), Uσ

1 =U2 and V σ
1 =V2

Mσ
1 is a (U2,V2)-table.

Permute rows and columns with an element of C ×R to match M2.

Fix M ∈M , Mi a (U ,V )-table, U =< u >, V =< v >.
σ ∈ GL(2,3), ρ ∈C ×R,
σρ ∈GM ⇒Uσ =U , vσ =V ⇒ uσ = u±1, vσ = v±1

For each such σ there is a unique ρ such that σρ fixes M .

Corollary |M | = |G|
|GM | =

48 · (3!)8

4
= 12 · (3!)8 = 20,155,393.
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Orthogonality

Definition
Two Latin squares are orthogonal provided each ordered pair of
symbols occurs exactly once when the squares are superimposed.
A family of Latin squares is mutually orthogonal provided each pair
of distinct elements are orthogonal.

Example

These Cayley tables of Z3 are orthogonal.

0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

0 1 2

0 0 1 2
2 2 0 1
1 1 2 0

00 11 22
12 20 01
21 02 10
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Sales Pitch & Questions

The next Fermat problem?

“Regarding families of mutually orthogonal latin squares, it has long
been known that there are at most n −1 mutually orthogonal Latin
squares of order n [i.e. n ×n], and that this bound is achieved when
n is a prime power. However, for non-prime power orders larger
than six, the largest size of a family of mutually orthogonal latin
squares is unknown. This problem has been proposed by Mullen as
a candidate for the ‘next Fermat problem.’" [Lorch & Weld]

So the largest size of a mutually orthogonal family of 9×9 Latin
squares is 8.

Questions
What is the largest size of a mutually orthogonal family of Sudoku
Tables & Magic Sudoku Tables for Z9? Magic Cayley-Sudoku Tables
for Z2

3?
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Mutually Orthogonal Sets of Sudoku Tables for Z9

Theorem (Pedersen & Vis, 2009)
There exists a family of 6 mutually orthogonal Sudoku Tables for Z9

and this is the largest possible such family.

————–O————–

Orthogonal Sudoku Puzzle (MAA FOCUS)
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Mutually Orthogonal Sets of Magic Sudoku Tables for Z9

Theorem (Lorch & Weld)
There exists a family of 2 mutually orthogonal Magic Sudoku Tables
for Z9 and this is the largest possible such family.
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Mutually Orthogonal Sets of Magic-Cayley Sudoku Tables
for Z2

3

Theorem
There exists a family of 6 mutually orthogonal Magic Cayley-Sudoku
Tables for Z9 and this is the largest possible such family, assuming
any such family can be normalized to have the same column labels.

Idea of the Proof (adapted from Pedersen & Vis)

Think of Z2
3 as the additive group of GF(9). Take U = GF(3). For each

x ∈ GF(9)\U , Ux is a complement to U . A family of (U ,Ux)-tables,
one for each x ∈ GF(9)\U , suitably arranged, is mutually orthogonal.
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