
Cayley-Sudoku Tables:
A WOU (Re)Discovery

Michael Ward

Pi Mu Epsilon Oregon Delta Chapter Induction Ceremony
Pi Day 2016

Michael Ward Cayley-Sudoku Tables: A WOU (Re)Discovery



Outline

1. Groups, Cayley, and Cayley Tables

2. Sudoku

3. Cayley-Sudoku Tables

4. Cayley-Sudoku Puzzle

5. Constructions for Cayley-Sudoku Tables
Jenn Carmichael ’06 and Keith Schloeman ’07

6. Cayley-Sudoku Tables and Loops, Constructions Rediscovered
Kady Hossner ’11

7. Magic Cayley-Sudoku Tables
Rosana Mersereau ’13

Michael Ward Cayley-Sudoku Tables: A WOU (Re)Discovery



Groups

A group is a set with an operation. The operation must be closed
and associative. There must be an identity. Each element must have
an inverse.

In this talk, all groups are finite, meaning the set has only finitely
many elements.
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An Example of a Group

Set: Z9 := {1,2,3,4,5,6,7,8,9}
(Think of 9 as a badly written 0.)

Operation: Addition mod 9, denoted +9

Ï For every x, y ∈Z9,
x +9 y := x + y mod 9 := mod (x + y ,9)

Ï := the remainder when x + y is divided by 9
Remember to write 9 when the remainder is 0.

Ï For kids, it’s “clock arithmetic” on a clock with 9 hours.
Ï Examples:

Ï 3+9 8 := 3+8 mod 9 := mod (3+8,9) = 2
Ï 3+9 6 = 9

Ï Closure is clear. 9 is the identity. Inverses are easy to spot.
Trust me on associativity. ∴ It is a group.
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Arthur Cayley 1821-1895

Distinguished student at Cambridge. Graduated 1842. Barrister in
London 1849-1863. Sadleirian Professor of Pure Mathematics at
Cambridge 1863. Collected works in 13 volumes contain over 900
papers, including . . .

The First Paper on Abstract Group Theory

ON THE THEORY OF GROUPS, AS DEPENDING UPON THE SYMBOLIC

EQUATION θn = 1

Arthur Cayley

Philosophical Magazine, VOL. VII (1854)
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After defining a group (approximately as we do now), Cayley writes,
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Ï The table thus described by Cayley is now called the Cayley
Table of the group.

Ï Cayley claims that it has 2/3 of the properties of a Sudoku-like
table, that is, each symbol occurs (exactly) once in each row
and exactly once in each column. Such a table is called a Latin
Square.
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(Unorthodox) Cayley Table ofZ9 with operation +9

9 3 6 1 4 7 2 5 8

9 9 3 6 1 4 7 2 5 8
1 1 4 7 2 5 8 3 6 9
2 2 5 8 3 6 9 4 7 1
3 3 6 9 4 7 1 5 8 2
4 4 7 1 5 8 2 6 9 3
5 5 8 2 6 9 3 7 1 4
6 6 9 3 7 1 4 8 2 5
7 7 1 4 8 2 5 9 3 6
8 8 2 5 9 3 6 1 4 7

Hold that thought . . .
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Whence Sudoku?

According to Ed Pegg, Jr. (MAA website),

In the May 1979 issue of Dell Pencil Puzzles & Word
Games (issue #16), page 6, something amazing appeared:
Number Place. Here are the original instructions: “In this
puzzle, your job is to place a number into every empty box
so that each row across, each column down, and each
small 9-box square within the large square (there are 9 of
these) will contain each number from 1 through 9.
Remember that no number may appear more than once in
any row across, any column down, or within any small
9-box square; this will help you solve the puzzle . . .
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. . . The numbers in circles below the diagram will give
you a head start–each of these four numbers goes into one
of the circle boxes in the diagram (not necessarily in the
order given)."

The first Number Place puzzles. (Dell Pencil Puzzles & Word Games #16, page 6, 1979-05)
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Ï Pegg cites personal communication with Will Shortz (NY Times
crossword puzzle editor, NPR Puzzlemaster, and “star” of the
movie Wordplay), who found the puzzle was invented by 74
year old architect Howard Garns (1905-1989).

Ï The speaker first saw a Sudoku puzzle in the possession of
Professor Sam Hall, Willamette U, July 2005.
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Drum roll, please.

Divide the Cayley table of Z9 into nine 3 by 3 blocks, like a Sudoku
puzzle.

9 3 6 1 4 7 2 5 8

9 9 3 6 1 4 7 2 5 8
1 1 4 7 2 5 8 3 6 9
2 2 5 8 3 6 9 4 7 1
3 3 6 9 4 7 1 5 8 2
4 4 7 1 5 8 2 6 9 3
5 5 8 2 6 9 3 7 1 4
6 6 9 3 7 1 4 8 2 5
7 7 1 4 8 2 5 9 3 6
8 8 2 5 9 3 6 1 4 7
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Tah-dah! The First Cayley-Sudoku Table
(under that name)

9 3 6 1 4 7 2 5 8

9 9 3 6 1 4 7 2 5 8
1 1 4 7 2 5 8 3 6 9
2 2 5 8 3 6 9 4 7 1
3 3 6 9 4 7 1 5 8 2
4 4 7 1 5 8 2 6 9 3
5 5 8 2 6 9 3 7 1 4
6 6 9 3 7 1 4 8 2 5
7 7 1 4 8 2 5 9 3 6
8 8 2 5 9 3 6 1 4 7

Mathematics Magazine, April 2010

It is a Cayley table of Z9 and it is also a Sudoku table because it is
divided into blocks in which each group element appears exactly
once.
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Cayley-Sudoku Puzzles

Given a partially completed Cayley-Sudoku Table of an unknown
group, complete the table so that each group element appears
exactly once in each row, in each column, and in each designated
block.

Hints

Ï The usual Sudoku techniques.

Ï Look for the identity.

Ï If you find x? y = identity, then you also know y ?x = identity.

Ï In the given puzzle, the group is not Z8. The puzzle can be
done without knowing the actual group.
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Cayley-Sudoku Puzzle with 2×4 blocks

1 2 3 4 5 6 7 8

1 7
5 1
2 1
6 1
3 7
7 6 1
4
8 7
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Cayley-Sudoku Puzzle Solution

1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
5 5 6 7 8 1 2 3 4
2 2 3 4 1 8 5 6 7
6 6 7 8 5 4 1 2 3
3 3 4 1 2 7 8 5 6
7 7 8 5 6 3 4 1 2
4 4 1 2 3 6 7 8 5
8 8 5 6 7 2 3 4 1
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Constructions for Cayley-Sudoku Tables

With Jenn Carmichael ’06 and Keith Schloeman ’07

Every Cayley table has two of the three of the properties of a Sudoku
table; only the subdivision of the table into blocks that contain each
element exactly once is in doubt. When and how can a Cayley table
be arranged in such a way as to satisfy the additional requirements
of being a Sudoku table?

Examine our Cayley-Sudoku table of Z9 for clues.
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Column Labels

9 3 6 1 4 7 2 5 8

9 9 3 6 1 4 7 2 5 8
1 1 4 7 2 5 8 3 6 9
2 2 5 8 3 6 9 4 7 1
3 3 6 9 4 7 1 5 8 2
4 4 7 1 5 8 2 6 9 3
5 5 8 2 6 9 3 7 1 4
6 6 9 3 7 1 4 8 2 5
7 7 1 4 8 2 5 9 3 6
8 8 2 5 9 3 6 1 4 7

The set of the first three column labels {9,3,6} is also a group
under +9. That makes it a subgroup of Z9.
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Column Labels

9 3 6 1 4 7 2 5 8

9 9 3 6 1 4 7 2 5 8
1 1 4 7 2 5 8 3 6 9
2 2 5 8 3 6 9 4 7 1
3 3 6 9 4 7 1 5 8 2
4 4 7 1 5 8 2 6 9 3
5 5 8 2 6 9 3 7 1 4
6 6 9 3 7 1 4 8 2 5
7 7 1 4 8 2 5 9 3 6
8 8 2 5 9 3 6 1 4 7

Add 1 to each of the elements of the subgroup: 9+9 1 = 1, 3+9 1 = 4,
6+9 1 = 7, those are the next three column labels. The resulting set
is called a right coset of the subgroup, it is denoted {9,3,6}+9 1 .

Michael Ward Cayley-Sudoku Tables: A WOU (Re)Discovery



Column Labels

9 3 6 1 4 7 2 5 8

9 9 3 6 1 4 7 2 5 8
1 1 4 7 2 5 8 3 6 9
2 2 5 8 3 6 9 4 7 1
3 3 6 9 4 7 1 5 8 2
4 4 7 1 5 8 2 6 9 3
5 5 8 2 6 9 3 7 1 4
6 6 9 3 7 1 4 8 2 5
7 7 1 4 8 2 5 9 3 6
8 8 2 5 9 3 6 1 4 7

Now consider the right coset
{9,3,6}+9 2 = {9+9 2,3+9 2,6+9 2} = {2,5,8} . The elements of that

coset are the final three column labels.
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Column Labels

9 3 6 1 4 7 2 5 8

9 9 3 6 1 4 7 2 5 8
1 1 4 7 2 5 8 3 6 9
2 2 5 8 3 6 9 4 7 1
3 3 6 9 4 7 1 5 8 2
4 4 7 1 5 8 2 6 9 3
5 5 8 2 6 9 3 7 1 4
6 6 9 3 7 1 4 8 2 5
7 7 1 4 8 2 5 9 3 6
8 8 2 5 9 3 6 1 4 7

Observation 1: The columns in each block of the Cayley-Sudoku
table are labeled with elements of the right cosets of a subgroup.
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Row Labels

Left cosets of the subgroup are also of interest.

9+9 {9,3,6} = {9+9 9,9+9 3,9+9 6} = {9,3,6}

1+9 {9,3,6} = {1+9 9,1+9 3,1+9 6} = {1,4,7}

2+9 {9,3,6} = {2+9 9,2+9 3,2+9 6} = {2,5,8}

Notice that left and right cosets partition the group into disjoint
subsets.
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Row Labels

9 3 6 1 4 7 2 5 8

9 9 3 6 1 4 7 2 5 8
1 1 4 7 2 5 8 3 6 9
2 2 5 8 3 6 9 4 7 1
3 3 6 9 4 7 1 5 8 2
4 4 7 1 5 8 2 6 9 3
5 5 8 2 6 9 3 7 1 4
6 6 9 3 7 1 4 8 2 5
7 7 1 4 8 2 5 9 3 6
8 8 2 5 9 3 6 1 4 7

9+9 {9,3,6} = {9+9 9,9+9 3,9+9 6} = {9,3,6}

1+9 {9,3,6} = {1+9 9,1+9 3,1+9 6} = {1,4,7}

2+9 {9,3,6} = {2+9 9,2+9 3,2+9 6} = {2,5,8}
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Row Labels

9 3 6 1 4 7 2 5 8

9 9 3 6 1 4 7 2 5 8
1 1 4 7 2 5 8 3 6 9
2 2 5 8 3 6 9 4 7 1
3 3 6 9 4 7 1 5 8 2
4 4 7 1 5 8 2 6 9 3
5 5 8 2 6 9 3 7 1 4
6 6 9 3 7 1 4 8 2 5
7 7 1 4 8 2 5 9 3 6
8 8 2 5 9 3 6 1 4 7

Observation 2: The rows in each block of the Cayley-Sudoku table
are each labeled with a complete set of left coset representatives,
that is, a left transversal.
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Keith’s Construction

Let G with operation ? be a finite group.
Take any subgroup S of G .
Arrange the Cayley table of G like this:
Columns labeled by the distinct right cosets S? g1,S? g2, . . . ,S? gn

Rows labeled by sets T1,T2, . . . ,Tk where T1,T2, . . . ,Tk partition G into
complete sets of left coset representatives of S in G .

S? g1 S? g2 . . . S? gn

T1

T2
...

Tk

This always gives a Cayley-Sudoku Table.

Michael Ward Cayley-Sudoku Tables: A WOU (Re)Discovery



Another Example of a Group

D4 = the set of symmetries of a square under the operation of
composition of functions.

Eight Symmetries

Ï Rotations about the center (counterclockwise):
R0,R90,R180,R270

Ï Reflections across lines through the center: H (horizontal), V
(vertical), D and F (diagonal)
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Right cosets of the subgroup {R0, H } will label the columns.

1. {R0, H }◦R0 := {R0 ◦R0, H ◦R0} = {R0, H }

2. {R0, H }◦R90 := {R0 ◦R90, H ◦R90} = {R90,D}

3. {R0, H }◦R180 := {R0 ◦R180, H ◦R180} = {R180,V }

4. {R0, H }◦R270 := {R0 ◦R270, H ◦R270} = {R270,F }

Complete sets of left coset representatives of {R0, H } will label the
rows.

1. R0 ◦ {R0, H } := {R0 ◦R0,R0 ◦H } = {R0, H }

2. R90 ◦ {R0, H } := {R90 ◦R0,R90 ◦H } = {R90,F }

3. R180 ◦ {R0, H } := {R180 ◦R0,R180 ◦H } = {R180,V }

4. R270 ◦ {R0, H } := {R270 ◦R0,R270 ◦H } = {R270,D}

These sets do the trick:
T1 := {R0,R90,V ,D} and T2 := {H ,F ,R180,R270}

(Notice the left and right cosets are not the same.)
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Keith’s Construction Applied to D4

R0 H R90 D R180 V R270 F

R0 R0 H R90 D R180 V R270 F
R90 R90 F R180 H R270 D R0 V
V V R180 F R270 H R0 D R90

D D R270 V R0 F R90 H R180

H H R0 D R90 V R180 F R270

F F R90 H R180 D R270 V R0

R180 R180 V R270 F R0 H R90 D
R270 R270 D R0 V R90 F R180 H
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Jen & Mike’s “Christmas Eve” Construction

Label the columns with left cosets, instead of right cosets.

t1?S t2?S . . . tn ?S

L1

L2
...

Lk

In order for the above to be a Cayley-Sudoku table, the sets
L1,L2, . . . ,Lk labeling the rows must be complete sets of left coset
representatives for S and (usually) several other subgroups at once!

Namely, for the subgroups g−1?S? g for all g ∈G , where
g−1?S? g := {g−1?h? g : h ∈ S}, which are the conjugates of S.
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Use the subgroup {R0, H }.
Left cosets of {R0, H } will label the columns.

1. R0 ◦ {R0, H } := {R0 ◦R0,R0 ◦H } = {R0, H }

2. R90 ◦ {R0, H } := {R90 ◦R0,R90 ◦H } = {R90,F }

3. R180 ◦ {R0, H } := {R180 ◦R0,R180 ◦H } = {R180,V }

4. R270 ◦ {R0, H } := {R270 ◦R0,R270 ◦H } = {R270,D}

Rows must be labeled with complete sets of left coset
representatives for {R0, H } and for the subgroup
{R0,V } = R−1

90 ◦ {R0, H }◦R90 (the only conjugates of {R0, H }).

1. R0 ◦ {R0,V } := {R0 ◦R0,R0 ◦ v} = {R0,V }

2. R90 ◦ {R0,V } := {R90 ◦R0,R90 ◦V } = {R90,D}

3. R180 ◦ {R0,V } := {R180 ◦R0,R180 ◦V } = {R180, H }

4. R270 ◦ {R0,V } := {R270 ◦R0,R270 ◦V } = {R270,F }

These sets do the trick:
L1 := {R0,R90,R180,R270} and L2 := {H ,V ,D ,F }
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Christmas Eve Construction Applied to D4

R0 H R90 F R180 V R270 D

R0 R0 H R90 F R180 V R270 D
R90 R90 F R180 V R270 D R0 H
R180 R180 V R270 D R0 H R90 F
R270 R270 D R0 H R90 F R180 V

H H R0 D R270 V R180 F R90

V V R180 F R90 H R0 D R270

D D R270 V R180 F R90 H R0

F F R90 H R0 D R270 V R180
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Cayley-Sudoku Tables and Loops
Constructions Rediscovered

With Kady Hossner ’11
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In 2010 (and earlier), I asked, “Under what conditions on S can G be
partitioned into complete sets of left coset representatives of all the
required subgroups (i.e. of g−1?S? g for all g ∈G)?”

Answers we knew in 2010

Ï Not always.

Ï And
Â When S only one conjugate i.e. when S is a normal subgroup
(becomes Keith’s construction).
Â When S has only two conjugates as in the D4 example (from
Hall’s Marriage Theorem for two families).
Â When S has a complement, i.e. ∃T ≤G such that G = T S and
T ∩S = {e}.

Answer from the 2010 XXX Ohio State-Denison Math Conf.

Ï “You and your students have rediscovered a 1939 theorem of
Reinhold Baer!” [Emphasis added?]

Michael Ward Cayley-Sudoku Tables: A WOU (Re)Discovery



In 2010 (and earlier), I asked, “Under what conditions on S can G be
partitioned into complete sets of left coset representatives of all the
required subgroups (i.e. of g−1?S? g for all g ∈G)?”

Answers we knew in 2010

Ï Not always.

Ï And
Â When S only one conjugate i.e. when S is a normal subgroup
(becomes Keith’s construction).
Â When S has only two conjugates as in the D4 example (from
Hall’s Marriage Theorem for two families).
Â When S has a complement, i.e. ∃T ≤G such that G = T S and
T ∩S = {e}.

Answer from the 2010 XXX Ohio State-Denison Math Conf.

Ï “You and your students have rediscovered a 1939 theorem of
Reinhold Baer!” [Emphasis added?]

Michael Ward Cayley-Sudoku Tables: A WOU (Re)Discovery



In 2010 (and earlier), I asked, “Under what conditions on S can G be
partitioned into complete sets of left coset representatives of all the
required subgroups (i.e. of g−1?S? g for all g ∈G)?”

Answers we knew in 2010

Ï Not always.

Ï And
Â When S only one conjugate i.e. when S is a normal subgroup
(becomes Keith’s construction).
Â When S has only two conjugates as in the D4 example (from
Hall’s Marriage Theorem for two families).
Â When S has a complement, i.e. ∃T ≤G such that G = T S and
T ∩S = {e}.

Answer from the 2010 XXX Ohio State-Denison Math Conf.

Ï “You and your students have rediscovered a 1939 theorem of
Reinhold Baer!” [Emphasis added?]

Michael Ward Cayley-Sudoku Tables: A WOU (Re)Discovery



In 2010 (and earlier), I asked, “Under what conditions on S can G be
partitioned into complete sets of left coset representatives of all the
required subgroups (i.e. of g−1?S? g for all g ∈G)?”

Answers we knew in 2010

Ï Not always.

Ï And
Â When S only one conjugate i.e. when S is a normal subgroup
(becomes Keith’s construction).
Â When S has only two conjugates as in the D4 example (from
Hall’s Marriage Theorem for two families).
Â When S has a complement, i.e. ∃T ≤G such that G = T S and
T ∩S = {e}.

Answer from the 2010 XXX Ohio State-Denison Math Conf.

Ï “You and your students have rediscovered a 1939 theorem of
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Reinhold Baer 1902-1979

Ï For the record, Baer’s Theorem is

THEOREM 2.3. The multiplication system (S <G ;r (X )) = M is a
division system [i.e. quasigroup] if, and only if, the elements
r (X ) form a complete set of representatives [i.e. transversal] for
the right cosets of the group G modulo every subgroup of G
which is conjugate to S in G.

–R. Baer, Nets and Groups, Transactions of the AMS, 1939.

Roughly, it tells when coset “multiplication” gives a
quasigroup–as opposed to a (factor) group.

Ï Our Christmas Eve Construction is a disguised (left coset)
version of Baer’s theorem viewed in terms of a popular
puzzle!
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Kady & Mike’s Loop Examples

A loop is a set with an operation where the Cayley table is a Latin
square and there is an identity (but not necessarily inverses nor
associativity).

Baer also shows for any loop L, the associated left multiplication
group1 LMul t (L) and the subgroup fixing loop’s identity LMul t (L)e

give a group and subgroup where Christmas Eve Construction
applies. Eventually (!), this lead to examples of Cayley-Sudoku
tables not known to us in 2010.
(Conjecture: all examples are of this type.)

1Analogous to Cayley’s Theorem, the left regular permutation representation of
a group.
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Another Link to the Past: Jósef Dénes 1932-2002

Ï THEOREM 1.5.5. If L is the latin square representing the
[Cayley] table of a group G of order n, where n is a composite
number, then L can be split into a set of n (n,1)-complete
non-trivial latin rectangles.

–J. Dénes and A. D. Keedwell, Latin Squares and Their
Applications, 1974.

–J. Dénes, Algebraic and Combinatorial Characterization
of Latin Squares I, Mathematica Slovaca, 1967.

Ï An (n,1)-complete non-trivial latin rectangle is a rectangle
containing each of the n elements of G exactly once. We’ve
called them blocks. Dénes’s “splitting” of G’s Cayley table is a
Cayley-Sudoku table!

Ï The theorem is true, but the proof, (in both references) is
incorrect. Theorem is omitted in D & K 2nd ed. 2015.
The proof in its correct form is Keith’s Construction.
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Full Disclosure: The First Cayley-Sudoku Tables
(under another name and before sudoku!)

(Dénes, 1967, p. 262)

(Dénes & Keedwell, 1974, p. 49)
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An Original Construction(?)

Our article “Cosets and Cayley-Sudoku Tables” contains a third
construction for extending a Cayley-Sudoku table of a subgroup to
a table for the big group. One referee said it was “the centerpiece of
the paper." So far, we have not seen this construction elsewhere.

(see Mathematics Magazine Vol. 83, April 2010, pp. 130-139)
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Magic Cayley-Sudoku Tables

With Rosana Mersereau ’13
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Chinese Magic Square Example

This square is magic because the sum of the numbers in every row
and every column and the two diagonals is 15, the magic constant
for this square.

4 9 2 → 15
3 5 7 → 15
8 1 6 → 15

↙ ↓ ↓ ↓ ↘
15 15 15 15 15

Allegedly, this magic square appears on the back of a sacred turtle
in an ancient Chinese legend.
(BBC series “The Story of Maths” 2008, episode 2)
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Magic Sudoku Table forZ9

1 8 0 7 5 6 4 2 3
2 3 4 8 0 1 5 6 7
6 7 5 3 4 2 0 1 8
8 4 6 5 1 3 2 7 0
7 0 2 4 6 8 1 3 5
3 5 1 0 2 7 6 8 4
5 1 3 2 7 0 8 4 6
4 6 8 1 3 5 7 0 2
0 2 7 6 8 4 3 5 1

(Lorch & Weld 2011)

In each 3×3 block, the sum–using the group operation, addition
mod 9–of the elements in each row, each column, and each
diagonal is 0.
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Magic Cayley-Sudoku Tables

A Magic Cayley-Sudoku table is a Cayley-Sudoku table in which the
blocks are magic squares, that is, the blocks are square and
operating the elements in every row, column, and diagonal using
the group operation is the same group element, called the magic
constant.

? ? · · · ? →
? ? · · · ? →
...

...
...

...
? ? · · · ? →

↙ ↓ ↓ ·· · ↓ ↘

Operating elements in the block as indicated by the arrows (directions matter) are

the same.
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Magic Cayley-Sudoku Table Example

00 10 20 01 11 21 02 12 22

00 00 10 20 01 11 21 02 12 22
01 01 11 21 02 12 22 00 10 20
02 02 12 22 00 10 20 01 11 21
10 10 20 00 11 21 01 12 22 02
11 11 21 01 12 22 02 10 20 00
12 12 22 02 10 20 00 11 21 01
20 20 00 10 21 01 11 22 02 12
21 21 01 11 22 02 12 20 00 10
22 22 02 12 20 00 10 21 01 11

A Magic Cayley-Sudoku Table for Z3 ×Z3 with magic constant 00
( 00 = (0,0), 10 = (1,0), etc. )
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Counting

Ï How many Magic Sudoku Tables for Z9?

Ï 32,256 (Lorch & Weld 2011)

Ï How many Magic Cayley-Sudoku Tables for Z9?

Ï None! (Ward 2015)

Ï Switch to Z3 ×Z3. How many Magic Cayley-Sudoku Tables are
there?

Ï 20,155,392 (Ward 2015)
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Rosanna & Mike’s Magic Construction

If
• G is a group of order k2 and S is a subgroup of G of order k.
• The order of every element divides k and S ≤ Z (G).
• (Trivial Product Property) There exists an ordering [S] = [h1,h2, . . . ,hk ]
where h1?h2? · · ·?hk = e.
• (Magic Shuffle Property) There exists a CSLCR [T ] = [t1, t2, . . . , tk ] of S in
G such that for every t ∈ T , (t1? t )? (t2? t )? · · ·? (tk ? t ) = e.

Then
The following layout gives a Magic Cayley-Sudoku Table with magic

constant e, the group identity. (In fact, pandiagonal magic.)

[St1] [St2] . . . [Stn]

[T h1]
[T h2]

...
[T hk ]
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Sample Applications of the Magic Construction

1. Any abelian group of odd order k2 where the order of every
element divides k has a Magic Cayley-Sudoku Table.

2. While not all groups have Magic Cayley-Sudoku tables, every
group is isomorphic to a subgroup of a group having a Magic
Cayley-Sudoku table.
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Other Opportunities for Undergraduate Research

1. Counting other types of Cayley-Sudoku Tables.

2. The theory of Orthogonal Cayley-Sudoku Tables and Mutually
Orthogonal Sets of Cayley-Sudoku Tables is in the early stages.

3. What is the minimum number of entries needed in a
Cayley-Sudoku puzzle?

4. Algorithms for producing Cayley-Sudoku puzzles?

5. For the other construction (extending a Cayley-Sudoku table of
a subgroup to a table for the big group) and more open
questions see “Cosets and Cayley-Sudoku Tables”,
Mathematics Magazine Vol. 83, April 2010, pp. 130-139.
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