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1. Cayley-Sudoku Tables Review

2. Construction 2 = Baer’s Theorem

3. Construction 1 = Dénes’s Theorem with a Correct Proof
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Sudoku

Sudoku puzzles are 9×9 arrays divided into nine 3×3 sub-arrays or
blocks. Digits 1 through 9 appear in some of the entries. Other
entries are blank. The goal is to fill the blank entries with the digits 1
through 9 in such a way that each digit appears exactly once in each
row and in each column, and in each block.

3 4 7
7 6 9

2 6 4
6 7 5 2

4 1 8
3 1

6 5
8 2 3

5 9 1 7
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Cayley-Sudoku Tables

A Cayley-Sudoku Table is the Cayley table of a group arranged
(unconventionally) so that the body of the Cayley table has blocks
containing each group element exactly once.

9 3 6 1 4 7 2 5 8

9 9 3 6 1 4 7 2 5 8
1 1 4 7 2 5 8 3 6 9
2 2 5 8 3 6 9 4 7 1
3 3 6 9 4 7 1 5 8 2
4 4 7 1 5 8 2 6 9 3
5 5 8 2 6 9 3 7 1 4
6 6 9 3 7 1 4 8 2 5
7 7 1 4 8 2 5 9 3 6
8 8 2 5 9 3 6 1 4 7

A Cayley-Sudoku table of Z9 (with 9 = 0).

Michael Ward Cayley-Sudoku Tables, Quasigroups, and More Questions



A Cayley-Sudoku table of A4 with 6×2 blocks.
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How to construct non-trivial
Cayley-Sudoku tables?
(“Non-trivial” meaning the blocks are not just single rows or
columns.)

Michael Ward Cayley-Sudoku Tables, Quasigroups, and More Questions



Construction 2

Assume H is a subgroup of G having order k and index n. Also
suppose t1H , t2H , . . . , tn H are the distinct left cosets of H in G .
Arranging the Cayley table of G with columns labeled by the cosets
t1H , t2H , . . . , tn H and the rows labeled by sets L1,L2, . . . ,Lk yields a
Cayley-Sudoku table of G with blocks of dimension n ×k if and only
if L1,L2, . . . ,Lk are left transversals of H g for all g ∈G .

t1H t2H . . . tn H

L1

L2
...

Lk
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Interesting (?) Question in Search of an Answer
In 2010 (and earlier), I asked, “Given a subgroup H of a finite group
G , under what circumstances is it possible to partition G into sets
L1,L2, . . . ,Lk where for every g ∈G each Li is a left transversal of
H g ?”

Answers we knew in 2010

Ï Not always.

Ï When H is a normal subgroup, i.e. only one conjugate.

Ï When H has a complement, i.e. ∃T ≤G such that G = T H and
T ∩H = 1.

Ï When H has only two conjugates, i.e. [G : NG (H)] = 2.

Answer from the 2010 audience

Ï “You and your students have rediscovered a 1939 theorem of
Reinhold Baer!” [Emphasis added?]
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Reexamine Construction 2 to See Baer’s Theorem

A Cayley-Sudoku table from Construction 2 looks like

t1H t2H . . . tn H

L1

L2
...

Lk

Look at a “row of blocks” from the table

t1H t2H . . . tn H

Li

Michael Ward Cayley-Sudoku Tables, Quasigroups, and More Questions



t1H t2H . . . tn H

Li

Let Li = {`1,`2, . . . ,`n}. Expand the row labels and fill-in the rows.

t1H t2H . . . tn H

`1 `1t1H `1t2H `1tn H
`2 `2t1H `2t2H . . . `2tn H
...
`n `n t1H `n t2H . . . `n tn H
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t1H t2H . . . tn H

`1 `1t1H `1t2H `1tn H
`2 `2t1H `2t2H . . . `2tn H
...
`n `n t1H `n t2H . . . `n tn H

Recall Li = {`1,`2, . . . ,`n} is a left transversal of H (and all its
conjugates) in G , relabel the cosets.

`1H `2H . . . `n H

`1 `1`1H `1`2H `1`n H
`2 `2`1H `2`2H . . . `2`n H
...
`n `n`1H `n`2H . . . `n`n H
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`1H `2H . . . `n H

`1 `1`1H `1`2H `1`n H
`2 `2`1H `2`2H . . . `2`n H
...
`n `n`1H `n`2H . . . `n`n H

Ï Each row contains the n distinct left cosets of H in G .

Ï Proof: Just apply the left regular permutation representation
of G corresponding to left multiplication by ` j .

Ï Each column contains the n distinct left cosets of H in G .

Ï Proof: The sudoku condition requires that each block
contain all the elements of G .
∴ The n cosets seen in each column must be distinct.

Ï The body of the table is a Latin square by definition.
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`1H `2H . . . `n H

`1 `1`1H `1`2H `1`n H
...
`n `n`1H `n`2H . . . `n`n H

Replace each row label ` j with the coset ` j H .

`1H `2H . . . `n H

`1H `1`1H `1`2H `1`n H
`2H `2`1H `2`2H . . . `2`n H

...
`n H `n`1H `n`2H . . . `n`n H

Ï The resulting Cayley table defines a quasigroup operation on
the left cosets of H in G by definition.

Ï Baer names this system (H <G ;r (X )) with function r (X )
referring to the choice of transversals. Here r (`i H) = `i .
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Recapitulation

Ï From a Cayley-Sudoku table from Construction 2

Ï each “row of blocks” from the table
t1H t2H . . . tn H

Li

Ï leads to a quasigroup (H <G ;r (X )) on the left cosets of H in G .

Ï The converse is also true. So . . .

Ï

t1H t2H . . . tn H

L1
...

Lk

gives a Cayley-Sudoku table.

⇐⇒ Each L j is a left transversal of H g for all g ∈G.
⇐⇒ Each row of blocks leads to a quasigroup (H <G ;r (X )) on
the left cosets of H in G.
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Baer’s Theorem

The last equivalence on the previous slide is Baer’s Theorem.

Ï For the record,

THEOREM 2.3. The multiplication system (S <G ;r (X )) = M is a
division system [i.e. quasigroup] if, and only if, the elements
r (X ) form a complete set of representatives [i.e. transversal] for
the right cosets of the group G modulo every subgroup of G
which is conjugate to S in G.

–R. Baer, Nets and Groups, Transactions of the
AMS, 1939.

Ï Our Construction 2 is, therefore, just a (left-handed) version
of Baer’s theorem viewed in terms of a popular puzzle!
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Remarks on Baer & Construction 2

1. One of the sets L j contains 1. The corresponding quasigroup
will have an identity 1H . That one is a loop (i.e. quasigroup
with identity).

2. Baer also shows for any loop L, the left multiplication group1

LMul t (L) and the stabilizer of the loop’s identity LMul t (L)e

give a group and subgroup where Construction 2 applies.
Eventually (!), this lead to examples of Cayley-Sudoku tables
not known to us in 2010 (with Kady Hossner WOU ’11).

3. Baer further shows how to think of these ideas geometrically in
terms of nets or 3-webs. No time for that today.

1Analogous to the left regular permutation representation of a group.
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Construction 1 or Keith’s Construction

Let G be a finite group. Assume H is a subgroup of G having order k and
index n. If H g1, H g2, . . . , H gn are the n distinct right cosets of H in G , then
arranging the Cayley table of G with columns labeled by the cosets
H g1, H g2, . . . , H gn and the rows labeled by sets T1,T2, . . . ,Tk (as in the
table) yields a Cayley-Sudoku table of G with blocks of dimension n ×k if
and only if T1,T2, . . . ,Tk partition G into left transversals of H in G .

H g1 H g2 . . . H gn

T1

T2
...

Tk

Is this also a rediscovery of an older result?
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Dénes’s Theorem

Ï THEOREM 1.5.5. If L is the latin square representing the
multiplication table of a group G of order n, where n is a
composite number, then L can be split into a set of n
(n,1)-complete non-trivial latin rectangles.

–J. Dénes and A. D. Keedwell, Latin Squares and
Their Applications, 1974.

–J. Dénes, Algebraic and Combinatorial
Characterization of Latin Squares I, Mathematica Slovaca,
1967.

Ï An (n,1)-complete non-trivial latin rectangle is a rectangle
containing each of the n elements of G exactly once. We’ve
called them blocks. Dénes’s “splitting” of G’s Cayley table is a
Cayley-Sudoku table!

Ï The theorem is true, but the proof (in both references) is
incorrect.
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Dénes’s Error

Ï Incorrect proof.
Take a proper non-trivial subgroup H of G and arrange the
Cayley table in this way

H g1 H g2 . . . H gn

T1

T2
...

Tk

where T1,T2, . . . ,Tk partition G into right transversals of H in
G .

Ï Examples show the resulting blocks might not contain each
element of G exactly once. Left transversals are needed.

Ï Our Construction 1 is Dénes’s theorem with a correct proof!
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Ï Our Construction 1 is Dénes’s theorem with a correct proof!
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Construction 3: Extending Cayley-Sudoku Tables

Let G be a finite group with a subgroup A. Let C1,C2, . . . ,Ck

partition A and R1,R2, . . .Rn partition A such that the following
table is a Cayley-Sudoku table of A.

C1 C2 . . . Ck

R1

R2
...

Rn
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Construction 3, continued

If {l1, l2, . . . , lt } and {r1,r2, . . .rt } are left and right transversals,
respectively, of A in G , then arranging the Cayley table of G with
columns labeled with the sets Ci r j , i = 1, . . . ,k, j = 1, . . . , t and the
bth block of rows labeled with l j Rb , j = 1, . . . , t , for b = 1, . . . ,n yields
a Cayley-Sudoku table of G with blocks of dimension tk ×n.

C1r1 C2r1 . . . Ck r1 C1r2 . . . Ck r2 . . . C1rt . . . Ck rt

l1R1
l2R1

.

.

.
lt R1
l1R2

.

.

.
lt R2

.

.

.
l1Rn

.

.

.
lt Rn
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Can Lightning Strike Twice?

Is Construction 3 also a
rediscovery of an older result?
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The Zassenhaus Connection

From “Historical notes on loop theory” by H. O. Pflugfelder,

“On the algebraic scene, brilliant algebraists happened to be in
Hamburg at the time, such as Erich Hecke, a student of Hilbert;
Emil Artin; and Artin’s students, Max Zorn and Hans Zassenhaus
. . . Bol gives an example by Zassenhaus. This example (of order 81)
was the first example of a non-associative commutative Moufang
loop . . . It was Zassenhaus, again, who soon constructed the first
example of a right Bol loop.”

–Commentationes Mathematicae Universitatis
Carolinae, 2000, emphasis added

(Loops played a central role in the Honors Thesis of Kady Hossner
WOU ’11 on Construction 2, but not as much of a role in this talk as
expected.)
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THANK YOU!!
To read about the constructions, more open questions for
undergraduate exploration, and work a Cayley-Sudoku puzzle see
Carmichael, Schloeman, and Ward, Cosets and Cayley-Sudoku
Tables, Mathematics Magazine 83 (April 2010), pp. 130-139.
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Bonus Slide: A Magic Cayley-Sudoku Table

In this Cayley-Sudoku table of Z3 ×Z3 with (a,b) abbreviated ab

00 10 20 01 11 21 02 12 22

00 00 10 20 01 11 21 02 12 22
01 01 11 21 02 12 22 00 10 20
02 02 12 22 00 10 20 01 11 21
10 10 20 00 11 21 01 12 22 02
11 11 21 01 12 22 02 10 20 00
12 12 22 02 10 20 00 11 21 01
20 20 00 10 21 01 11 22 02 12
21 21 01 11 22 02 12 20 00 10
22 22 02 12 20 00 10 21 01 11

the sum of each row, each column, and each diagonal in each block
is 00. Magic!
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