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Abstract. We exhibit for each integer n ≥ 15 an ordinary irreducible
character of the symmetric group Sn, which restricts irreducibly to An, with
the property that its degree is divisible by every prime less than or equal to
n, thereby proving a conjecture of D. L. Alvis.
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1 Introduction

In [1], D. L. Alvis made the following conjecture:

Every alternating group An, with n ≥ 15, has an ordinary irre-
ducible character whose degree is divisible by every prime less
than or equal to n.

We prove this conjecture by producing for each integer n ≥ 15—in a system-
atic way for n ≥ 49—an ordinary irreducible character χn of the symmetric
group Sn, which restricts irreducibly to An, with this property.

This implies that the diameter of the degree graph of An is 1 for n ≥ 15,
improving the result of Lewis and White [4, Lemma 2.4].

The characters of Sn are parametrized by the partitions of n [3, Theorem
2.1.11]. Denote the character of Sn corresponding to the partition α of n by
χα. Each partition α of n has an associated diagram [α] [2, Definition 3.1] and
an associated hook graph [2, Definition 18.2]. For example, if α = (5, 3, 3)
then

[α] =
x x x x x
x x x
x x x

and its hook graph is
7 6 5 2 1
4 3 2
3 2 1

.

If [α] is a diagram, the conjugate diagram [α′] is obtained by interchanging
the rows and columns in [α]. Then α′ is the partition conjugate to α [2,
Definition 3.5]. If α′ 6= α, then χα restricts irreducibly to An [3, Theorem
2.5.7]. Finally, if h is the product of all the hook lengths in the hook graph
of the diagram [α], then χα(1) = n!/h [2, Theorem 20.1].

For each integer n ≥ 49, we now define a partition αn of n such that χαn(1)
is divisible by every prime p ≤ n.

Definition 1. For n ≥ 49, define k to be the unique positive integer satisfy-
ing k2 ≤ n < (k + 1)2, that is, k = b

√
nc. (Strictly speaking we should use a

notation such as kn to indicate dependence on n, but we will not do this.)

Case 1: k is odd.
For j = 1, . . . , k, define aj = k + (k − 1)/2 + 1− j. Define the partition αn

of n to be
(a1, a2, . . . , ak) if n = k2;
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(a1 + 1, a2 + 1, . . . , aj + 1, aj+1, . . . , ak) if n = k2 + j with 1 ≤ j ≤ k;
(a1 +2, a2 +2, . . . , aj +2, aj+1 +1, . . . , ak +1) if n = k2 +k+j with 1 ≤ j ≤ k.

Case 2: k is even.
Define

ai =

{
k + k/2− i, if 1 ≤ i ≤ k/2;

k + k/2 + 1− i, if k/2 + 1 ≤ i ≤ k.

Define the partition αn of n to be
(a1, a2, . . . , ak) if n = k2;
(a1, . . . , ak/2−j, ak/2−j+1 + 1, . . . , ak/2 + 1, ak/2+1, . . . , ak) if n = k2 + j with
1 ≤ j ≤ k/2− 1;
(a1, a2 + 1, . . . , ak/2 + 1, ak/2+1, . . . , ak−1, ak + 1) if n = k2 + k/2;
(a1, a2 + 1, . . . , ak/2 + 1, ak/2+1, . . . , ak−j−1, ak−j + 1, . . . , ak + 1) if n = k2 +
k/2 + j with 1 ≤ j ≤ k/2− 1;
(a1 + 1, a2 + 1, . . . , ak + 1) if n = k2 + k
(a1 + 1, . . . , ak/2−j + 1, ak/2−j+1 + 2, . . . , ak/2 + 2, ak/2+1 + 1, . . . , ak + 1) if
n = k2 + k + j with 1 ≤ j ≤ k/2− 1;
(a1 +1, a2 +2, . . . , ak/2 +2, ak/2+1 +1, . . . , ak−1 +1, ak +2) if n = k2 +k+k/2;
(a1 + 1, a2 + 2, . . . , ak/2 + 2, ak/2+1 + 1, . . . , ak−j−1 + 1, ak−j + 2, . . . , ak + 2) if
n = k2 + k + k/2 + j with 1 ≤ j ≤ k/2− 1;
(a1 + 2, . . . , ak + 2) if n = k2 + 2k.

Notice that in both cases the partition αk2+k+j is obtained by adding 1 to
each number in αk2+j, 0 ≤ j < k, and αk2+2k is obtained by adding 2 to each
number in αk2 .

The following example for k = 7 illustrates the scheme.

49: (10, 9, 8, 7, 6, 5, 4) 56: (11, 10, 9, 8, 7, 6, 5)
50: (11, 9, 8, 7, 6, 5, 4) 57: (12, 10, 9, 8, 7, 6, 5)
51: (11, 10, 8, 7, 6, 5, 4) 58: (12, 11, 9, 8, 7, 6, 5)
52: (11, 10, 9, 7, 6, 5, 4) 59: (12, 11, 10, 8, 7, 6, 5)
53: (11, 10, 9, 8, 6, 5, 4) 60: (12, 11, 10, 9, 7, 6, 5)
54: (11, 10, 9, 8, 7, 5, 4) 61: (12, 11, 10, 9, 8, 6, 5)
55: (11, 10, 9, 8, 7, 6, 4) 62: (12, 11, 10, 9, 8, 7, 5)

63: (12, 11, 10, 9, 8, 7, 6)

The following example for k = 8 illustrates the above scheme.

64: (11,10,9,8,8,7,6,5) 72: (12,11,10,9,9,8,7,6)
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65: (11,10,9,9,8,7,6,5) 73: (12,11,10,10,9,8,7,6)
66: (11,10,10,9,8,7,6,5) 74: (12,11,11,10,9,8,7,6)
67: (11,11,10,9,8,7,6,5) 75: (12,12,11,10,9,8,7,6)
68: (11,11,10,9,8,7,6,6) 76: (12,12,11,10,9,8,7,7)
69: (11,11,10,9,8,7,7,6) 77: (12,12,11,10,9,8,8,7)
70: (11,11,10,9,8,8,7,6) 78: (12,12,11,10,9,9,8,7)
71: (11,11,10,9,9,8,7,6) 79: (12,12,11,10,10,9,8,7)

80: (13,12,11,10,10,9,8,7)

For n ≥ 49, we will write χn for χαn . Since the number of rows k of [αn] is
strictly less than the number of columns, αn 6= α′

n and therefore χn restricts
irreducibly to An.

Denote the largest hook length of the hook graph of the diagram [αn] by γn.
In our proof we will partition the set of primes less than or equal to n into 3
parts:

1. primes in the range [2, k], which we will call small;

2. primes in the range (k, γn], which we will call middle;

3. primes in the range (γn, n], which we will call large.

If a prime p is large, it occurs in n! but not in h and thus divides n!/h. We
will handle small primes fairly easily by adapting an argument of [1]. Most
of our energy will be spent on the middle primes. Since we will show in the
coming sections that γn < 3k, the only multiples of a middle prime p which
can occur as hook lengths are p and 2p.

For the middle primes, we consider two cases depending upon the parity of k
and subcases depending on the residue class of k mod 4. The strategy of the
proofs is the same in all the cases, so we outline it here. It is clear from the
definition that the hook lengths in any row or any column of a hook graph
decrease as we move to the right along the row or down the column. If the
lowest row on which a hook length ` appears is row m, then the number
of hook lengths equal to ` is at most m because a hook length can appear
at most once in a row. In particular, when ` is p and when ` is 2p where
p is a middle prime, then the corresponding values of m allow us to bound
the number of factors of p in h. However, in some cases that bound is not
sufficient to prove p divides n!/h. Therefore, in those cases, we sharpen the
bound. We shall see in the hook graphs that a hook length ` > k, where k is
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odd, always occurs in one of the first three columns of the lowest row m in
which it occurs. If we can produce a row u in which ` does not appear and
for which the values in the first three columns are all greater than `, then
u < m, and so the number of hook lengths equal to ` is strictly less than m.
When k is even, the technique is the same, but it will suffice to look at the
first two columns. The sharper bounds thus obtained are sufficient to prove
that middle primes divide n!/h = χn(1).

2 Middle Primes

For the rest of the paper, we fix the meanings of n, k, αn, γn and χn es-
tablished in the introduction. When referring to diagrams of partitions and
their corresponding hook graphs, we follow the convention of numbering rows
from top to bottom, columns from left to right.

It is clear from considering the leftmost three columns of the hookgraph for
αn—the leftmost two columns suffice when n = k2, k2 + k or k2 + 2k or
when k is even—and the bottom row that every integer in [1, γn] occurs as
a hooklength (see the proofs of Lemmas 4 and 7 below where the relevant
columns are listed). The following notation will be useful.

Definition 2. For positive integers n and p, LR(n, p) equals the largest
integer r for which p is in row r. In other words, LR(n, p) equals the number
of the lowest row of the hook graph of αn in which p appears. When p does
not appear in the hook graph for αn, LR(n, p) is defined to be 0. We define
NH(n, p) to be the number of hook lengths in the hook graph for αn equal
to p.

Lemma 1. If p is an integer, k ≥ 7, and k2 ≤ n ≤ k2 + 2k − 1, then
LR(n + 1, p) ≥ LR(n, p).

Proof. The diagram for αn+1 is obtained from the diagram for αn by adding
a single node at the right of one row, call it row v, in the diagram for αn.
Hook lengths on rows v + 1 to k are unaffected by this. Hook lengths on
row v are all increased by 1 with an extra hook length 1 added at the right.
Hook lengths in the column above this new 1 are all increased by 1. Since
k ≥ 7, ak > 3 and so hook lengths in columns 1 to 3 of rows 1 to v − 1 are
unaffected. Furthermore, the lowest appearance of a hooklength occurs in
columns 1 to 3 when k is odd, columns 1 to 2 when k is even (the proofs
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of Lemmas 4 and 7 list the relevant columns). The upshot of all of this is
that exactly one hook length, the leftmost one in row v of the hook graph
for αn+1 has a new lowest appearance, whereas as the lowest appearance of
every other hook length is the same for both the hook graphs for αn and
αn+1.

Two routine calculations will be used repeatedly. We record them as a lem-
mas for easy reference.

Lemma 2. Suppose i, j, k, l are integers with i ≥ 1 and k ≥ 2l − 3j − 12,
then (k + 2i + j)(k − 3i + l) ≤ k2 + (j + l − 1)k + (l − 3)(j + 2).

Proof. Simply expand and complete the square on i.

(k + 2i + j)(k − 3i + l) = k2 + (j + l)k + jl − 6i2 − (k − 2l + 3j)i

= k2 + (j + l)k + jl +
(k − 2l + 3j)2

24
− 6

(
i +

(k − 2l + 3j)
12

)2

≤ k2 + (j + l)k + jl +
(k − 2l + 3j)2

24
− 6

(
1 +

(k − 2l + 3j)
12

)2

= k2 + (j + l − 1)k + (l − 3)(j + 2).

Lemma 3. Suppose i, j, k, l are integers, then

(k + 2i + j)

(
3k + l

4
− i + 1

)
≤ 25k2 + (20j + 10l + 40)k + (2j + l + 4)2

32
.

Proof. Complete the square again.

(k + 2i + j)
(

3k + l

4
− i + 1

)
=

25k2 + (20j + 10l + 40)k + (2j + l + 4)2

32

− 2
(

i− k − 2j + l + 4
8

)2

≤ 25k2 + (20j + 10l + 40)k + (2j + l + 4)2

32
.
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2.1 Middle Primes when k is Odd

Lemma 4. Suppose k is an odd integer and k ≥ 7. If p = k + 2i is an
odd integer in (k, γn], then we have the following values of γn and LR(n, p),
depending upon the residue class of k mod 4.

k ≡ 1 mod 4
n γn Parity of γn LR(n, p)

k2 5k−3
2

odd
3k + 1

4
− i

k2 + j, 1 ≤ j ≤ k 5k−1
2

even
3k + 1

4
− i

k2 + k + j, 1 ≤ j ≤ k 5k+1
2

odd

{
3k+1

4
− i, if p < 5k+5

2
− 2j

3k+5
4
− i, if p ≥ 5k+5

2
− 2j

k ≡ 3 mod 4
n γn Parity of γn LR(n, p)

k2 5k−3
2

even
3k − 1

4
− i

k2 + j, 1 ≤ j < k 5k−1
2

odd

{
3k−1

4
− i, if p < 5k+3

2
− 2j

3k+3
4
− i if p ≥ 5k+5

2
− 2j

k2 + k + j, 0 ≤ j ≤ k 5k+1
2

even
3k + 3

4
− i

Proof. From the definition of αn, γn equals the first number of αn plus k−1.
Thus, the values and parities of γn are easy to calculate.

We begin with the case n = k2 + j, 1 ≤ j < k. By direct computation, the
first three columns of the hook graph for αn are:

γn γn − 1 γn − 2
γn − 2 γn − 3 γn − 4

. . . . . . . . .
γn − 2(j − 1) γn − (2j − 1) γn − 2j
γn − 2j − 1 γn − 2j − 2 γn − 2j − 3

. . . . . . . . .
γn − 2k + 3 γn − 2k + 2 γn − 2k + 1
γn − 2k + 1 γn − 2k γn − 2k − 1.

For reference, row j is underlined. Observe that the hook lengths in rows 1
through j of columns 1 and 3 along with those of rows j + 1 through k have
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the same parity as γn, while all the other hook lengths in those columns have
the opposite parity.

Furthermore, those columns contain the integers from γn to γn − 2k− 1 and
γn − 2k − 1 ≤ k. Thus, the lowest appearance of p in the hook graph of αn

is in one of those first three columns.

Suppose k ≡ 1 mod 4. The odd integers γn − 1 to γn − (2j − 1) occur in
rows 1 to j of column 2. The odd integers γn − (2j + 1) to γn − (2k − 1)
occur in rows j + 1 to k of column 1. Thus, the lowest appearance of the
odd integer γn − (2m − 1) for 1 ≤ m ≤ k is in row m. Since p is such
an odd integer, the lowest appearance of p = k + 2i is in row m where
k+2i = γn−(2m−1) = 5k−1

2
−(2m−1). Therefore, m = 3k+1

4
−i = LR(n, p),

as was to be shown.

Next suppose k ≡ 3 mod 4. This time the odd integers γn to γn − 2(j − 1)
occur in rows 1 to j of column 1, the odd integer γn − 2j occurs in row j of
column 3, and the odd integers γn−2(j +1) to γn−2k occur in rows j +1 to
k of column 2. Thus, the lowest appearance of the odd integer γn − 2m is in
row m + 1 when 0 ≤ m ≤ j − 1, whereas the lowest appearance is in row m
when j ≤ m ≤ k. Now p is such an odd integer and p = γn−2m = 5k−1

2
−2m

yields m = 3k−1
4
− i. Therefore,

LR(n, p) =

{
m = 3k−1

4
− i, if p < γn − 2(j − 1) = 5k+3

2
− 2j

m + 1 = 3k+3
4
− i, if p ≥ γn − 2(j − 1) = 5k+3

2
− 2j.

We now turn to the case n1 = k2 + k + j, 1 ≤ j < k, retaining the above
notation n = k2 + j. Although the case for n1 may be handled by similar
methods, we will show how it may be obtained recursively from the case for
n.

From the definition of our partitions, we see that the diagram [αn1 ] is obtained
from [αn] simply by adding one node per row. Therefore, γn1 = γn + 1 and
the hook graph for [αn1 ] is obtained from the hook graph for αn by adjoining
a column on the left. More specifically, with row j underlined for reference,
the first four columns of the hook graph for αn1 are:
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γn + 1 γn γn − 1 γn − 2
γn − 1 γn − 2 γn − 3 γn − 4

. . . . . . . . . . . .
γn − 2j + 3 γn − 2j + 2 γn − 2j + 1 γn − 2j

γn − 2j γn − 2j − 1 γn − 2j − 2 γn − 2j − 3
. . . . . . . . . . . .

γn − 2k + 4 γn − 2k + 3 γn − 2k + 2 γn − 2k + 1
γn − 2k + 2 γn − 2k + 1 γn − 2k γn − 2k − 1.

Let p be an odd integer in (k, γn1 ]. By comparing the hook lengths in the first
column with their positions in columns 2 - 4, in other words, by comparing
them with their positions in the hook graph for [αn], we see the following.

When k ≡ 1 mod 4,

LR(n1, p) =

{
LR(n, p) if p < γn − 2j + 3 = 5k+5

2
− 2j

LR(n, p) + 1 if p ≥ γn − 2j + 3 = 5k+5
2
− 2j.

Note that this formula is valid for the “new” odd integer γn + 1 because
LR(n, γn + 1) was defined to be zero. When k ≡ 3 mod 4,

LR(n1, p) =

{
LR(n, p) + 1 if p < γn − 2j + 2 = 5k+3

2
− 2j

LR(n, p) if p ≥ γn − 2j + 2 = 5k+3
2
− 2j.

Substituting the values for LR(n, p) from the previous case completes the
proof here.

The remaining cases are for k2, k2 + k, and k2 + 2k. The proof for k2 is
similar to k2 + j (and easier). Then one may do k2 + k and k2 + 2k directly
or by using the recursive method as above.

Lemma 5. Suppose k is an odd integer and k ≥ 7. If p = k + 2i is an
odd integer in (k, γn], then we have the following upper bounds on NH(n, p),
depending upon the residue class of k mod 4.

k ≡ 1 mod 4
n Bound Strict when

k2 + j, 0 ≤ j ≤ k − 1 3k+1
4
− i 0 < j and p ∈ (k, 2k − 1]

k2 + k 3k+1
4
− i –

k2 + k + j, 1 ≤ j ≤ k 3k+5
4
− i j < k and p ∈ (k, 2k − 1]
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k ≡ 3 mod 4
n Bound Strict when

k2 + j, 0 ≤ j ≤ k − 1 3k+3
4
− i p ∈ (k, 2k − 1]

k2 + k 3k+3
4
− i –

k2 + k + j, 1 ≤ j ≤ k 3k+3
4
− i j < k and p ∈ (k, 2k − 1]

Proof. Since each hook length occurs at most per row, it is clear that NH(n, p) ≤
LR(n, p). Thus, the bounds follow immediately from Lemma 4 (using the
largest value of LR(n, p) in cases where it depends on p).

As outlined in the introduction, we show the bound is strict in certain cases
by finding r such that r < LR(n, p) and row r of the hook graph of αn does
not contain p.

Suppose n = k2 + j, 0 ≤ j ≤ k − 1.

Referring to Lemma 4 again, we see the bound is strict when k ≡ 3 mod 4
and j = 0.

Assume 0 < j. The hook graph for αn contains a j × (k − j + 1) block of
even integers

2k 2(k − 1) . . . 2j
2(k − 1) 2(k − 2) . . . 2(j − 1)

...
...

. . .
...

2(k − j + 1) 2(k − j) . . . 2.

beginning with the occurrence of 2k in row 1 of the hook diagram.

Further assume p ∈ (k, 2k−1]. Then p−1 and p+1 are among the consecutive
even integers from 2k to 2 which appear across the first row and down the
last column of the block. Thus, at least one row of the block, say row r,
contains both p − 1 and p + 1. Since hook lengths in any row are strictly
decreasing, it follows that row r of the hook graph of αn does not contain p
and that the values in the first three columns of row r are all greater that p.
In particular, r < LR(n, p). Thus, the bound is strict in this case.

For n1 = k2+k+j, 1 ≤ j ≤ k−1, and p ∈ (k, 2k−1], compare the hook graph
for αn1 to that of αn as in the proof of Lemma 4. We see that row r of the hook
graph for αn1 still does not contain p and that r < LR(n, p) ≤ LR(n1, p).
Once again, the bound is strict.

Lemma 6. Suppose k is an odd integer and k ≥ 7. If p = k + 2i and 2p are
integers in (k, γn], then we have the following bounds on NH(n, 2p).
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k ≡ 1 mod 4 k ≡ 3 mod 4
n Bound Strict when Bound

k2 + j, 0 ≤ j ≤ k k+3
4
− 2i j = 0 k+1

4
− 2i

k2 + k + j, 1 ≤ j ≤ k k+3
4
− 2i – k+5

4
− 2i

Proof. By repeated application of Lemma 1, we see that the LR(k2+2k, 2p) ≥
LR(k2 + j, 2p) with 0 ≤ j < 2k and LR(k2 + k, 2p) ≥ LR(k2 + j, 2p) with
0 ≤ j < k.

The first two columns of the hook graph for n = k2, n = k2 + k, and
n = k2 + 2k are

γn γn − 1
γn − 2 γn − 3

. . . . . .
γn − 2(k − 1) γn − 2(k − 1)− 1.

.

Assume k ≡ 1 mod 4 and n = k2 + 2k. The first column consists entirely
of odd integers while the second consists entirely of even integers. Thus
the lowest occurrence of γn − 2(m − 1) with 1 ≤ m ≤ k is on row m. Now
2(k+2i) ≥ 2k+4 > (k+3)/2 = γn−2(k−1)−1. Thus the lowest occurrence
of 2p is on row m where

2(k + 2i) =
5k + 3

2
− 2m,

which yields LR(k2 + 2k, 2p) = m = (k + 3)/4− 2i.

When n = k2, one can check that the lowest occurrence of 2p is on row
(k − 1)/4− 2i, so our bound is strict in this case as claimed.

For k ≡ 3 mod 4, follow the same procedure using the hook graph for αk2+k

when n = k2+j, 0 ≤ j ≤ k, and the hook graph for αk2+2k when n = k2+k+j,
1 ≤ j ≤ k.

Proposition 1. Suppose that k2 ≤ n < (k + 1)2 with k an odd integer,
k ≥ 7, and p is a prime in (k, γn]. Then p divides the degree of the irreducible
character χn of Sn associated with αn.

Proof. Let p = k + 2i be a prime in (k, γn]. It is well-known that the power
to which p appears in n! is

∑∞
m=1bn/pmc, which equals bn/pc since p is a

middle prime. As observed in the introduction, by looking at the values of
γn, we see that the only multiples of p that could occur as hook lengths are
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p and 2p. Thus, once we show NH(n, p) + NH(n, 2p), the total number of
such hook lengths, is less than bn/pc it follows that p divides the degree of
χn. We obtain that inequality by proving p(NH(n, p)+NH(n, 2p)+1) ≤ n.

Case 1. Suppose 2p is a hook length.

A trivial calculation shows p ≤ γn/2 ≤ 2k − 1 in all cases. This allows us to
exploit the strict inequalities in Lemma 5 when appropriate.

First we consider n = k2 + j where 0 ≤ j ≤ k.

We read the bounds from Lemmas 5 and 6 and utilize strict inequalities,
when possible, to calculate that NH(n, p) + NH(n, 2p) is at most(

3k+1
4
− i

)
+

(
k+3
4
− 2i− 1

)
= k − 3i when j = 0 and k ≡ 1 mod 4;(

3k+1
4
− i− 1

)
+

(
k+3
4
− 2i

)
= k − 3i when 0 < j < k and k ≡ 1 mod 4;(

3k+3
4
− i− 1

)
+

(
k+1
4
− 2i

)
= k − 3i when j < k and k ≡ 3 mod 4;(

3k+1
4
− i

)
+

(
k+3
4
− 2i

)
= k − 3i + 1 when j = k and k ≡ 1 mod 4;(

3k+3
4
− i

)
+

(
k+1
4
− 2i

)
= k − 3i + 1 when j = k and k ≡ 3 mod 4.

In the first three cases, p(NH(n, p)+NH(n, 2p)+1) = (k+2i)(k−3i+1) ≤
k2 − 4 < n by Lemma 2. In the remaining cases, n = k2 + k and we again
use Lemma 2 and obtain (k + 2i)(k − 3i + 2) ≤ k2 + k − 2 = n− 2 < n.

Now turn to n = k2 + k + j with 1 ≤ j ≤ k. Using lemmas 5 and 6,
NH(n, p) + NH(n, 2p) is at most(

3k+5
4
− i− 1

)
+

(
k+3
4
− 2i

)
= k − 3i + 1 when j < k and k ≡ 1 mod 4;(

3k+3
4
− i− 1

)
+

(
k+5
4
− 2i

)
= k − 3i + 1 when j < k and k ≡ 3 mod 4;(

3k+5
4
− i

)
+

(
k+3
4
− 2i

)
= k − 3i + 2 when j = k and k ≡ 1 mod 4;(

3k+3
4
− i

)
+

(
k+5
4
− 2i

)
= k − 3i + 2 when j = k and k ≡ 3 mod 4.

By Lemma 2, (k +2i)(k− 3i+2) ≤ k2 +k− 2 < n and (k +2i)(k− 3i+3) ≤
k2 + 2k = n when j = k.

Case 2. Suppose 2p is not a hook length.

Here we have NH(n, 2p) = 0, so we seek to show p(NH(n, p) + 1) ≤ n.

Suppose k ≡ 3 mod 4. By Lemmas 5 and 3, p(NH(n, p) + 1) ≤ (k +
2i)(3k+3

4
− i + 1) ≤ 25k2+70k+49

32
. If k ≥ 11, this last expression is clearly less

than or equal to k2 and so less than or equal to n. If k = 7, that expression is
less than 56 which is at most n except when n = 49 + j, 0 ≤ j < 7. In those
exceptional cases, the middle primes are 11, 13, and 17. By Lemma 5, noting
the strict inequality for 11 and 13, NH(n, 11) ≤ (3 · 7 + 3)/4 − 2 − 1 = 3,
NH(n, 13) ≤ 2 and NH(n, 17) ≤ 1. Hence, p(NH(p, n) + 1) ≤ n in these
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cases as well.

Suppose k ≡ 1 mod 4. When n = k2 + j, 0 ≤ j ≤ k, p(NH(n, p) + 1) ≤
(k + 2i)(3k+1

4
− i + 1) ≤ 25k2+50k+25

32
≤ k2 ≤ n by Lemmas 5 and 3 and the

fact that k ≥ 7. If n = k2 + k + j, 1 ≤ j ≤ k, then p(NH(n, p) + 1) ≤
(k + 2i)(3k+5

4
− i + 1) ≤ 25k2+90k+81

32
≤ k2 + k + 1 ≤ n if k ≥ 13. If k = 9,

then 1 ≤ i ≤ 7 and so arithmetic shows (k + 2i)(3k+5
4
− i + 1) ≤ 91 ≤ n.

2.2 Middle Primes when k is Even

Lemma 7. Suppose k is an even integer and k ≥ 7. If p = k + 2i− 1 is an
odd integer in (k, γn], then we have the following values of γn and LR(n, p),
depending upon the residue class of k mod 4. The integer j satisfies 0 ≤
j ≤ k/2− 1.

k ≡ 2 mod 4
n γn Parity of γn LR(n, p)

k2 + j 5k−4
2

odd
3k + 2

4
− i

k2 + k/2 + j 5k−4
2

odd

{
3k+6

4
− i, if p ≤ k+4

2
+ 2j

3k+2
4
− i, if p > k+4

2
+ 2j

k2 + k + j 5k−2
2

even

{
3k+6

4
− i, if p ≤ 3k

2
+ 2j

3k+2
4
− i, if p > 3k

2
+ 2j

k2 + k + k/2 + j 5k−2
2

even
3k + 6

4
− i

k2 + 2k 5k
2

odd
3k + 6

4
− i

13



k ≡ 0 mod 4
n γn Parity of γn LR(n, p)

k2 + j 5k−4
2

even

{
3k+4

4
− i, if p ≤ 3k−2

2
+ 2j

3k
4
− i, if p > 3k−2

2
+ 2j

k2 + k/2 + j 5k−4
2

even
3k + 4

4
− i

k2 + k + j 5k−2
2

odd
3k + 4

4
− i

k2 + k + k/2 + j 5k−2
2

odd

{
3k+8

4
− i, if p ≤ k+6

2
+ 2j

3k+4
4
− i, if p > k+6

2
+ 2j

k2 + 2k 5k
2

even

{
3k+8

4
− i, if p ≤ 3k+2

2
3k+4

4
− i, if p > 3k+2

2

Proof. The values and parities of γn may be calculated just as in the odd
case.

Consider the case n = k2 + j, 0 ≤ k ≤ k/2− 1. The first two columns of the
hook graph for αn are

γn γn − 1
γn − 2 γn − 3

. . . . . .
γn − 2(k/2− j − 1) γn − 2(k/2− j − 1)− 1

γn − 2(k/2− j − 1)− 1 γn − 2(k/2− j − 1)− 2
. . . . . .

γn − 2(k − 3)− 1 γn − 2(k − 3)− 2
γn − 2(k − 2)− 1 γn − 2(k − 2)− 2

For reference, row k/2− j is underlined. The hook lengths in rows 1 through
k/2−j of column 1 along with those in rows k/2−j+1 through k of column 2
have the same parity as γn while all the other hook lengths in those columns
have the opposite parity.

Those two columns contain all the integers from γn to γn−2(k−2)−2 = k/2.
Therefore, the lowest row of the hook graph containing p contains p in one
of those first two columns.

Suppose k ≡ 2 mod 4. In this case, the odd integers γn − 2(m− 1) occur in
rows 1 to k/2− j of column 1 for 1 ≤ m ≤ k/2− j and in rows k/2− j + 1
to k of column 2 for k/2 − j + 1 ≤ m ≤ k. Thus, LR(n, p) = m where
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p = γn − 2(m− 1), which gives m = 3k+2
4
− i.

Next suppose k ≡ 0 mod 4. Now the odd integers γn−2(m−1)−1 make their
lowest appearance in rows 1 to k/2− j − 1 of column 1 for 1 ≤ m < k/2− j
and in rows k/2 − j + 1 to k of column 2 for k/2 − j ≤ m ≤ k. Thus,

LR(n, p) =

{
m if p > γn − 2(k/2− j − 1)− 1 = 3k−2

2
+ 2j

m + 1 if p ≤ γn − 2(k/2− j − 1)− 1 = 3k−2
2

+ 2j

where p = γn − 2(m− 1)− 1, yielding m = 3k
4
− i.

Turn now to the case n = k2 + k/2 + j, 0 ≤ j ≤ k/2 − 1. The calculations
are similar to those in previous cases, so less detail is included. The first two
columns of the hook graph are

γn γn − 1
γn − 1 γn − 2

. . . . . .
γn − 2(k − j − 2) + 1 γn − 2(k − j − 2)

γn − 2(k − j − 2) γn − 2(k − j − 2)− 1 (bottom row when j = 0)
. . . . . .

γn − 2(k − 3) γn − 2(k − 3)− 1
γn − 2(k − 2) γn − 2(k − 2)− 1

For reference, row k − j − 1 is underlined. Notice the parity change in each
column at rows 2 and k − j. Also note the lowest appearance of p will be in
one of these columns.

Assume k ≡ 2 mod 4. We see

LR(n, p) =

{
m if p > γn − 2(k − j − 2) = k+4

2
+ 2j

m + 1 if p ≤ γn − 2(k − j − 2) = k+4
2

+ 2j

where p = γn − 2(m− 1), which gives m = 3k+2
4
− i.

In case k ≡ 0 mod 4, the lowest appearance of each odd integer γn − 2(m−
1)− 1 for 1 ≤ m ≤ k− 1 is in row m+ 1. Solving for m as usual, LR(n, p) =
3k+4

4
− i.

Proceeding to the case n1 = k2+k+j, 0 ≤ j ≤ k/2−1, we let n = k2+j. By
comparing the hook graph for αn1 with that of αn as in the proof of Lemma 4,

we find LR(n1, p) =

{
LR(n, p) if p > γn − 2(k/2− j − 1) = 3k

2
+ 2j

LR(n, p) + 1 if p ≤ γn − 2(k/2− j − 1) = 3k
2

+ 2j

when k ≡ 2 mod 4 and
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LR(n1, p) =

{
LR(n, p) + 1 if p > γn − 2(k/2− j − 1)− 1 = 3k−2

2
+ 2j

LR(n, p) if p ≤ γn − 2(k/2− j − 1)− 1 = 3k−2
2

+ 2j

when k ≡ 0 mod 4, Substituting the values for LR(n, p) from above com-
pletes the proof in this case.

The proofs for n1 = k2 + k + k/2 + j, 0 ≤ j ≤ k/2 − 1, and n1 = k2 + 2k
may be done using similar methods.

Lemma 8. Suppose k is an even integer and k ≥ 8. If p = k + 2i− 1 is an
odd integer in (k, γn], then we have the following upper bounds on NH(n, p),
depending upon the residue class of k mod 4. In each case, 0 ≤ j ≤ k/2−1.

k ≡ 2 mod 4
n Bound Strict when

k2 + j 3k+2
4
− i p ∈ (k, 2k − 3]

k2 + k/2 + j 3k+2
4
− i p ∈ (k, 2k − 7]

k2 + k + j 3k+6
4
− i p ∈ (k, 2k − 3]

k2 + k + k/2 + j 3k+6
4
− i p ∈ (k, 2k − 5]

k2 + 2k 3k+6
4
− i p ∈ (k, 2k − 3]

k ≡ 0 mod 4
n Bound Strict when

k2 + j 3k+4
4
− i p ∈ (k, 2k − 3]

k2 + k/2 + j 3k+4
4
− i p ∈ (k, 2k − 5]

k2 + k + j 3k+4
4
− i p ∈ (k, 2k − 3]

k2 + k + k/2 + j 3k+4
4
− i, if (n, p) 6= (79, 13) p ∈ (k, 2k − 7]

5, if (n, p) = (79, 13) –
k2 + 2k 3k+4

4
− i p ∈ (k, 2k − 5]

Proof. We first consider the case n = k2 +k/2+j, 0 ≤ j ≤ k/2−1. We know
NH(n, p) ≤ LR(n, p). The indicated bounds follow directly from Lemma 7
when k ≡ 0 mod 4 or when k ≡ 2 mod 4 with p > k+4

2
+ 2j.

Beginning with the hook length in row 2 column k/2+2, the hook graph for
αn has a (k − 2 − j) × (j + 1) block of even integers shown below with its
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surrounding columns of odd integers:

2k − 3 2k − 4 2k − 6 . . . 2k − 2j − 4 2k − 2j − 7
2k − 5 2k − 6 2k − 8 . . . 2k − 2j − 6 2k − 2j − 9

...
...

...
. . .

...
...

2j + 5 2j + 4 2j + 2 . . . 4 1
2j + 3 2j + 2 2j . . . 2

If p ∈ (k, 2k − 5], then p appears in the leftmost column of odd integers
above since 2j + 3 ≤ 2(k/2 − 1) + 3 = k + 1. Now p does not appear in
the row of the block above this row. In other words, there is a number
r with r < LR(n, p) such that p does not appear in row r of the hook
graph. Therefore, NH(n, p) ≤ LR(n, p) − 1. (The case where j = 0 may
seem to require special attention, but in fact does not.) That gives the
desired bound for k ≡ 2 mod 4 with p ≤ k+4

2
+ 2j since k ≥ 10 implies

k+4
2

+ 2j ≤ k+4
2

+ 2(k/2 − 1) = 3k/2 ≤ 2k − 5. Moreover, it proves the
indicated bounds are strict if k ≡ 0 mod 4 and p ∈ (k, 2k − 5] or if k ≡ 2
mod 4, p ∈ (k, 2k − 5], and p > k+4

2
+ 2j.

To finish the proof, we need only show the bound is strict when k ≡ 2 mod 4,
p ∈ (k, 2k − 7], and p ≤ k+4

2
+ 2j. In that situation, solving for j we have

j ≥ 1
2
(k + 2i− 1− k+4

2
) = k−6

4
+ i ≥ 2 since k ≥ 10. Thus, there are at least

3 columns in the above block. The number p appears in the leftmost column
of odd integers at least two rows down from the top and p does not appear in
the two rows above this row. Therefore, NH(n, p) ≤ LR(n, p)− 2 < 3k+2

4
− i

as was to be shown. That completes the proof for n = k2 + k/2 + j, 0 ≤ j ≤
k/2− 1.

Skip to the case n1 = k2 +k+k/2+ j, 0 ≤ j ≤ k/2−1. Let n = k2 +k/2+ j.
The bounds follow from NH(n1, p) ≤ LR(n1, p) and Lemma 7 when k ≡ 2
mod 4 and when k ≡ 0 mod 4 with p > k+6

2
+ 2j.

The hook graph for αn1 contains the same block of even hook lengths as did
that of αn (now beginning with the hook length in row 2 column k/2+3).
Thus, for p ∈ (k, 2k − 5], the same row number r of the hook graph does
not contain p and r < LR(n, p) ≤ LR(n1, p) which implies NR(n1, p) ≤
LR(n1, p) − 1. That gives the desired bound for k ≡ 0 mod 4 with p ≤
k+6
2

+ 2j except possibly when k = 8, p = 13 and j = 3, because in all other
cases p ∈ (k, 2k−5]. From the hook graph for α79 we find NH(79, 13) = 5 =
LR(79, 13)

(
= 3k+8

4
− i

)
.
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In addition, NR(n1, p) ≤ LR(n1, p)− 1 proves the bounds mentioned earlier
are strict if k ≡ 2 mod 4 with p ∈ (k, 2k − 5] or if k ≡ 0 mod 4 with
p ∈ (k, 2k − 5] and p > k+6

2
+ 2j. Finally, suppose k ≡ 0 mod 4 with

p ∈ (k, 2k − 7] and p ≤ k+6
2

+ 2j. Solving for j, j ≥ k−8
2

+ i, which is at
least 1 and is at least 2 unless k = 8 and i = 1. As a result, for k > 8, i > 1
or j ≥ 2, the two rows identified earlier in the hook graph of αn still do not
contain p in the hookgraph of αn1 . Therefore, NH(n1, p) ≤ LR(n1, p)− 2 =
3k+8

2
− i−2 < 3k+4

4
. If k = 8, i = 1 and j = 1, then p = 9 and an examination

of the hookgraph of α77 yields NH(77, 9) < 6 = 3k+4
4
− i.

Turn next to the case n = k2 + j, 0 ≤ j ≤ k/2 − 1. The bounds follow
directly from Lemma 7.

Beginning with the hook length in row 1 column k/2+1, the hook graph for
αn contains a (k/2− j)× (k/2 + j) block of even integers

2k − 2 2k − 4 . . . k − 2j
2k − 4 2k − 6 . . . k − 2j − 2

...
...

. . .
...

k + 2j k + 2j − 2 . . . 2.

Assuming p ∈ (k, 2k−3], the p−1 and p+1 are among the consecutive even
integers from 2k − 2 to 2 which appear across the first row and down the
last column of the block. Arguing as in the proof of Lemma 5, the bound is
strict in this case.

Moving onto the cases n1 = k2 + k + j with 0 ≤ j ≤ k/2− 1 or n1 = k2 + 2k,
the bounds follow as before from Lemma 7. The strictness conditions may
be deduced much as in the case n1 = k2 + k + k/2 + j by using the block of
even hook lengths above.

Lemma 9. Suppose k is an even integer and k ≥ 8. If p = k + 2i − 1 and
2p are integers in (k, γn], then we have the following bounds on NH(n, 2p).

k ≡ 2 mod 4 k ≡ 0 mod 4
n Bound Bound

k2 + j, 0 ≤ j ≤ k k+6
4
− 2i k+4

4
− 2i

k2 + k + j, 1 ≤ j ≤ k k+6
4
− 2i k+8

4
− 2i

Proof. By repeated application of Lemma 1 we see NH(n, 2p) ≤ LR(n, 2p)
is at most LR(k2 + k, 2p) when n = k2 + j, 0 ≤ j ≤ k and is at most

18



LR(k2 +2k, 2p) in all cases. For n1 = k2 +k or k2 +2k, the first two columns
of the hook graph for αn1 are

γn1 γn1 − 1
γn1 − 2 γn1 − 3

. . . . . .
γn1 − 2(k/2− 1) γn1 − 2(k/2− 1)− 1

γn1 − 2(k/2− 1)− 1 γn1 − 2(k/2− 1)− 2
. . . . . .

γn1 − 2(k − 3)− 1 γn1 − 2(k − 3)− 2
γn1 − 2(k − 2)− 1 γn1 − 2(k − 2)− 2

with row k/2 underlined. Since p > k ≥ 8, the values of γn1 show γn1 −
2(k/2− 1)− 1 ≤ 3k/2− 2(k/2− 1)− 1 < 2k < 2p. Thus, 2p does not appear
below row k/2.

Examining rows 1 to k/2, we see LR(n1, 2p) = m where 2p = γn1−2(m−1)−1
when γn1 is odd, while 2p = γn1 − 2(m − 1) when γn1 is even. Taking
n1 = k2 + k when k ≡ 0 mod 4 and n = k2 + j, 0 ≤ j ≤ k, and taking
n1 = k2 + 2k otherwise, then solving for m give the bounds in each case.

Proposition 2. Suppose that k2 ≤ n < (k + 1)2 with k an even integer,
k ≥ 8, and p is a prime in (k, γn]. Then p divides the degree of the irreducible
character χn of Sn associated with αn.

Proof. As in the proof of Proposition 1, it suffices to show p(NH(n, p) +
NH(n, 2p) + 1) ≤ n.

Case 1. Suppose 2p is a hooklength.

In this case, we cannot have k = 8 because then 8 < p ≤ γn/2 ≤ 10,
contradicting the fact that p is a prime. In particular, the exceptional case
(n, p) = (79, 13) of Lemma 8 cannot occur. Moreover, with k > 8, it is easy
to show p ≤ γn/2 ≤ 2k− 7 which allows us to use the strict inequalities from
Lemma 8.

Therefore, from Lemmas 8 and 9 we have p(NH(n, p)+NH(n, 2p)+1) is at
most
(3k+2

4
−i−1)+(k+6

4
−2i) = k−3i+1 when k ≡ 2 mod 4 and k2 ≤ n < k2+k;

(3k+4
4
−i−1)+(k+4

4
−2i) = k−3i+1 when k ≡ 0 mod 4 and k2 ≤ n ≤ k2+k;

(3k+6
4
− i− 1)+ (k+6

4
− 2i) = k− 3i+2 when k ≡ 2 mod 4 and k2 + k ≤ n ≤

k2 + 2k;
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(3k+4
4
− i− 1)+ (k+8

4
− 2i) = k− 3i+2 when k ≡ 0 mod 4 and k2 + k < n ≤

k2 + 2k.
By Lemma 2, p(NH(n, p)+NH(n, 2p)+1) is at most (k+2i−1)(k−3i+2) ≤
k2−1 < n in the first two cases and at most (k+2i−1)(k−3i+3) ≤ k2+k ≤ n
in the last two cases.

Case 2. Suppose 2p is not a hooklength.

In this case, NH(n, 2p) = 0, so it suffices to show p(NH(n, p) + 1) ≤ n.

First, assume k = 8. In the exceptional case, (n, p) = (79, 13), 13(NH(79, 13)+
1) = 13 · 6 < 79. Henceforth, we assume (n, p) 6= (79, 13). We have
p ∈ (8, γn] ⊆ (8, 20], so i = 2, 3, 5 or 6 (recall p is prime). From Lemma 8,
p(NH(n, p) + 1) ≤ (8 + 2i− 1)(3·8+4

4
− i + 1) = 66, 65, 51 or 38, respectively.

Thus, for n ≥ 66 or i = 5 or i = 6, we are finished. When n is 64 or 65 and
i = 2 or i = 3, one can check the result directly from the corresponding hook
graphs.

Assume k > 8. From Lemmas 8 and 3, p(NH(n, p) + 1) is at most
(k + 2i − 1)(3k+2

4
− i + 1) ≤ 25k2+40k+16

32
≤ k2 ≤ n when k ≡ 2 mod 4 and

k2 ≤ n < k2 + k;
(k +2i− 1)(3k+6

4
− i+1) ≤ 25k2+80k+64

32
≤ k2 + k ≤ n when k ≡ 2 mod 4 and

k2 + k ≤ n ≤ k2 + 2k;
(k + 2i− 1)(3k+4

4
− i + 1) ≤ 25k2+60k+36

32
≤ k2 ≤ n when k ≡ 0 mod 4, k > 8.

The penultimate inequality in each case follows easily from the fact that
k ≥ 12 in the last case and k ≥ 10 in the others.

3 Small Primes

If m is a positive integer and p is a prime, νp(m) will denote the exponent to
which p occurs in the factorization of m.

Lemma 10. Let n be an integer with n ≥ 49, and let p be a prime with
p ≤ k. Let a and b be the positive integers defined by pa ≤ (5k + 1)/2 < pa+1

and pb ≤ n < pb+1. Assume p 6= 5 when 100 ≤ n ≤ 124. Then a < b.

Proof. Let c be the positive integer satisfying pc ≤ k < pc+1. Clearly b ≥ 2c.

First let p = 2. Then

5 · 2c + 1

2
≤ 5k + 1

2
<

5 · 2c+1 + 1

2
< 2c+3,
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implying a ≤ c + 2. If c > 2, then b ≥ 2c > c + 2 ≥ a. We can assume
that c is 1 or 2. Thus k ≤ 7. But since n ≥ 49, it follows that k = 7. Then
(5k + 1)/2 = 18. Thus a = 4. Since b ≥ 5, b > a.

Now assume p is an odd prime. Then

5 · pc + 1

2
≤ 5k + 1

2
<

5 · pc+1 + 1

2
< pc+2.

Thus a ≤ c + 1. Again since b ≥ 2c, b > a when c ≥ 2. We can assume c = 1
and a = 2 (If a = 1, then b > a). Then p2 ≤ (5k+1)/2 and p ≤

√
(5k + 1)/2.

Now √
5k + 1

2
≤ 10k − 2

25

if k ≥ 17. Thus if k ≥ 17,

p3 ≤ 5k + 1

2

√
5k + 1

2
≤ 5k + 1

2
· 10k − 2

25
= k2 − 1

25
< n.

In this case, b ≥ 3 > 2 = a. We are left to consider 49 ≤ n ≤ 288, c = 1 and
a = 2. Since 7 ≤ k ≤ 16, 18 ≤ (5k + 1)/2 ≤ 40.5. Because a = 2, we have
p = 3 or p = 5.

With p = 3 and c = 1, k ≤ 8, and so n ≤ 80. If 49 ≤ n ≤ 80, 7 ≤ k ≤ 8, and
18 ≤ (5k + 1)/2 ≤ 20.5. Thus a = 2 and b = 3, giving b > a.

Consider now the case with p = 5. Since 7 ≤ k ≤ 16, 18 ≤ (5k+1)/2 ≤ 40.5.
Since a = 2, 25 ≤ (5k +1)/2, yielding k ≥ 9.8, and so k ≥ 10 because k is an
integer. Thus n ≥ 100. Since the integer range [100, 124] is excluded when
p = 5, n ≥ 125. Then b ≥ 3 > 2 = a.

Lemma 11. If n ≥ 49 and p is a prime with p ≤ k, then p divides χn(1).

Proof. The largest hook length γn in the diagram of [αn] is one of (5k−3)/2,
(5k − 1)/2, or (5k + 1)/2 when k is odd, and one of (5k − 4)/2, (5k − 2)/2,
or 5k/2 when k is even. Now let d, b, and a be the positive integers defined
by pd ≤ γn < pd+1, pa ≤ (5k + 1)/2 < pa+1, and pb ≤ n < pb+1, respectively.
Clearly d ≤ a. Unless 100 ≤ n ≤ 124 and p = 5, the Lemma 10 guarantees
that a < b and so d < b. When 100 ≤ n ≤ 119, the largest hook length γn is
23 or 24. Thus when p is 5 in these cases, d = 1 and b = 2 giving d < b.

Assume now that p 6= 5 when 120 ≤ n ≤ 124. For each positive integer
i, let mi be the number of hook lengths of the hook graph of the diagram
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[αn] divisible by pi. Then by [3, Theorem 2.7.40], mi ≤ bn/pic for every i.
Denote the product of all the hook lengths of the hook graph by h. Now
νp(h) =

∑∞
i=1 mi. It is well-known that νp(n!) is

∑∞
i=1bn/pic. If n ≥ 49 and

n 6∈ [120, 124] when p = 5, the above argument shows that mb = 0 < bn/pbc.
Hence νp(h) < νp(n!) and so p divides χαn(1) = n!/h.

The cases 120 ≤ n ≤ 124 and p = 5 may be checked directly by hand.

Note that the proofs of Lemmas 10 and 11 together show: if n ≥ 125 and βn

is any partition of n with the property that the largest hook length of the
hook graph of βn equals γn, then χβ(1) is divisible by all small primes.

4 Small n

To conclude the proof of Alvis’ conjecture we must exhibit for each integer
n in the interval [15, 48] a partition whose associated character of Sn has the
desired property—its degree is divisible by every prime less than or equal to
n—and restricts irreducibly to An. We have exhibited partitions in Table 1
of [1] when 15 ≤ n ≤ 35 already. Partitions which work when 36 ≤ n ≤ 48
are:

36: (8,7,6,6,5,4) 37: (8,7,7,6,5,4) 38: (8,8,7,6,5,4)
39: (8,8,7,6,5,5) 40: (8,8,7,6,6,5) 41: (8,8,7,7,6,5)
42: (9,8,7,7,6,5) 43: (9,8,7,7,6,6) 44: (9,9,8,7,6,5)
45: (9,9,8,7,6,6) 46: (9,9,8,7,7,6) 47: (9,9,8,8,7,6)
48: (10,9,8,8,7,6).

Notice that with the sole exception of 43 we have followed the earlier scheme
for even k, in this case 6.
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