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Abstract
For geographers engaged in activities such as environmental planning and natural resource management,
regional climate models are becoming increasingly important as a source of information about the
possible impacts of future climate change. However, in order to make informed adaptation decisions, the
uncertainties associated with their output must be recognized and taken into account. In this paper, the
cascade of uncertainty from emissions scenario to global model to regional climate model is explored.
The initial part of the discussion focuses on uncertainties associated with human action, such as emissions
of greenhouse gases, and the climate system’s response to increased greenhouse gas forcing, which
includes climate sensitivity and feedbacks. In the second part of the discussion, uncertainties associated
with climate modelling are explored with emphasis on the implications for regional scale analysis. Such
uncertainties include parameterizations and resolutions, initial and boundary conditions inherited from
the driving global model, intermodel variability and issues surrounding the validation or verification of
models. The paper concludes with a critique of approaches employed to quantify or cater for
uncertainties highlighting the strengths and limitations of such approaches.
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I Introduction

Anthropogenic climate change is now well

established, with the latest report from the Inter-

governmental Panel on Climate Change (IPCC)

concluding with ‘very high confidence’ that

human-induced warming of the atmosphere is

taking place (IPCC, 2007: 3). In the event that

emissions of greenhouse gases continue to

increase, the likely impacts of continued anthro-

pogenic warming could include extinction risks

for plant and animal species (Thomas et al.,

2004), and direct physical risks to people and

communities, as well as economic risks. As

such, climate change and climate uncertainty are

relevant issues for a range of disciplines includ-

ing biogeography and ecology (Diniz Filho

et al., 2009; Wiens et al., 2009), water resource

management (Buytaert et al., 2009; Kay et al.,

2009), oceanography (Good et al., 2009) and

glaciology (Holland et al., 2010; Vizcaino

et al., 2010). Additionally, decision-makers at all

levels of governance must consider how the

potential impacts of climate change can be les-

sened or managed.

While adaptation policy is developed at

national level, differences in physical environ-

ment, land use and population make the task of
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implementing adaptation strategies a task best

carried out at regional and local scale. To do this,

planners require information about how human-

induced warming may affect key climate para-

meters such as precipitation and temperature and

what effects such changes will have in their

region of interest. Dynamical computer models

of climate, particularly regional climate models

(RCMs), can provide this information. Yet their

limitations must also be understood if their out-

puts are to be useful in developing meaningful

adaptation policy, particularly if such policies

are associated with costly infrastructure such

as flood defences or reservoir construction.

The climate system is comprised of numerous

complex processes and interactions and no model

can ever be expected to perfectly simulate this.

While many processes are represented in models

by fundamental physical equations, parameteriza-

tions are also employed to approximate certain

processes. The scientific knowledge on which

such parameterizations are based comes from

studying the current climate and proxy studies

of past climate and, as such, their ability to simu-

late the climate under different forcing conditions

may potentially be limited. Such limitations

necessitate a greater understanding and awareness

of the uncertainty surrounding climate model out-

put. If such projections are to provide an effective

basis for policy-making, then as much uncertainty

as possible must be accounted for.

In an earlier paper in Progress in Physical

Geography, Mitchell and Hulme (1999)

described uncertainty in regional climate model-

ling as a ‘cascade of uncertainty’. This description

is still very appropriate ten years on. However, the

sources of uncertainty that form the cascade have

changed somewhat, due to advances such as the

development of nested regional climate models

(RCMs), perturbed physics ensembles (PPEs) and

multimodel ensembles (MMEs). This review

characterizes the various forms of uncertainty,

discusses how they affect each stage of the mod-

elling process and considers approaches to work-

ing with uncertainty.

II Defining uncertainty in
climate modelling

The impacts associated with climate change are

dependent on what degree of change emerges.

This degree of change is unknown. In a system

undergoing change, past observations are

unlikely to be a robust estimator of future beha-

viour. For example, King (2004) notes that under

higher emissions concentrations, flood levels that

are currently expected every 100 years based on

observational records could occur every three

years. Therefore, long-term projections from cli-

mate models are needed to determine likely

changes on which to base adaptation planning.

However, with less knowledge of possible

outcomes, the basis for assigning probability

becomes less firm (Figure 1). Where outcomes

are poorly defined and knowledge about likeli-

hoods is low, alternative approaches such as sce-

nario analysis must be used, as there is no basis

for probabilities. As the uncertainty surrounding

the modelled output increases, confidence in the

data decreases. In order to prepare strategies for

managing climate risks, uncertainties must be

accounted for as far as possible.

The ‘types’ of uncertainty commonly identi-

fied in the larger scientific community (eg,

Tannert et al., 2007) are often referred to in

climate science also. At its core, uncertainty in cli-

mate science is a case of ‘imperfect knowledge’

and what Gershon (1998) identifies as ‘causes of

imperfect knowledge’ are all present. However,

due to the complexity of the climate system and

the modelling process, the relationships between

uncertainty types must also be considered.

A typology of climate model uncertainties is

described in Figure 2. The first division made

is between uncertainty inherent in the climate

system and uncertainty related to our ability to

model it, which can be further categorized as

epistemological or ontological.

Uncertainty in the climate system has two

main sources. First, there is uncertainty over

human action, including uncertainty due to

648 Progress in Physical Geography 34(5)



unknown future emission concentrations of

greenhouse gases and aerosols. Emissions-

related uncertainties are what Schwierz et al.

(2006) categorized as Type I uncertainties. This

uncertainty is largely due to unknowable knowl-

edge, and is inherently irreducible (Hulme and

Carter, 1999). Second, there is uncertainty over

how the climate system is likely to respond to

our actions. Further research may reduce this

uncertainty, but may also uncover previously

unknown processes, thereby increasing uncer-

tainty. Additionally, in a complex, non-linear

system the existence of unknown states or the

occurrence of ‘surprise’ events is also possible.

Uncertainty relating to our ability to model

the climate system can be refined into two fur-

ther categories. Epistemological uncertainty is

that which is related to gaps in knowledge: what

Hulme and Carter (1999) refer to as ‘incom-

plete’ knowledge. This gives rise to what

Schwierz et al. (2006) called Type III uncertain-

ties, and Jenkins and Lowe (2003) called science

uncertainty. These uncertainties relate to issues

with modelling specific processes, and also to

the issue of finite computer resources.

Ontological uncertainty, as it relates to cli-

mate modelling, involves the variability of the

climate system and climate models (van Asselt
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and Rotmans, 2002; van der Keur et al., 2008),

what Tannert et al. (2007) describes as ‘stochastic

features of the situation’. The non-deterministic

nature of the climate system (Mitchell and

Hulme, 1999) gives rise to ontological uncer-

tainty in climate modelling, which is character-

ized by a lack of predictability. Schwierz et al.

(2006) refer to these uncertainties as Type II

uncertainties. GCMs and RCMs share many of

the same uncertainties and are affected to some

degree by all types of uncertainty, though differ-

ent sources emerge as key influencers.

III Uncertainty and the climate
system

1 Emissions scenarios

The greatest uncertainty in climate modelling,

which features in all climate downscaling tech-

niques, stems from the unpredictability of future

anthropogenic greenhouse gas emissions and

their resultant atmospheric concentrations. The

IPCC Special Report on Emissions Scenarios

(SRES; Nakicenovic et al., 2000) discusses sev-

eral factors that impact on the atmospheric

greenhouse gas concentrations projected over

the present century: population growth, eco-

nomic and social development, the develop-

ment and utilization of carbon-free energy

sources and technology and changes to agricul-

tural practices and land use. The four storylines

on which the SRES scenarios are based capture

just some of the ways in which these driving

forces might change.

The emissions scenarios quantify the emis-

sions likely to be associated with each storyline.

Historical knowledge about emissions and their

driving forces can assist in scenario develop-

ment. For example, it is known that emissions

have historically increased as Gross Domestic
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Product (GDP) increases (Heil and Selden,

2001). However, it is impossible to say with

accuracy how all the driving influences will

evolve as they depend upon human behaviour.

This information is unknowable, and as such is

an inherently irreducible uncertainty. Yet the

degree of climate change experienced is inex-

tricably linked to concentrations of GHGs.

No climate projections can be made without

first finding a way to represent this unknow-

able information. As the outcomes are so

poorly defined, there can be no basis for

assigning probabilities to future emissions.

Alternative approaches are needed to represent

this uncertain factor.

A widely used approach to emissions uncer-

tainties is scenario analysis, in which future con-

centrations are estimated for a range of different

‘storylines’ representing varying combinations

of populations and economic development.

There are four socio-economic storylines for

which the IPCC have defined 40 emissions sce-

narios, and each scenario family – A1, A2, B1

and B2 – has an illustrative ‘marker’ scenario

(Nakicenovic et al., 2000). Significant expertise

goes into designing these storylines. For exam-

ple, numerical modelling may be carried out

to ensure self-consistency in assumptions

(Sugiyama, 2005). Yet there has been some crit-

icism of the manner in which they are designed.

In particular, economic assumptions that the

SRES scenarios make about GDP have come

under scrutiny (Castles and Henderson, 2003).

Emissions scenarios provide information about

GHG concentrations for a range of plausible

futures and cannot cover all eventualities. Out-

comes are left unaccounted for even at this initial

stage, introducing uncertainty to the overall pro-

jections. Since the future is not static, it is also

possible that the actual outcome may be entirely

unexpected, a scenario that had never been con-

sidered. It is conceivable that the very creation

of particular emissions scenarios and the result-

ing research carried out alters the likelihood of

scenarios coming to be, as humanity adopts

unforeseen new strategies to avoid a negative

scenario becoming reality.

2 Climate sensitivity

Climate sensitivity is a measure of how respon-

sive the climate system is to a change in forcing.

Assume that the climate system undergoes a

change in forcing DF2x, brought about by a dou-

bling of CO2 concentration levels. When the cli-

mate system reaches its new equilibrium, DT2x

is the resultant surface temperature response,

averaged globally. The sensitivity of the climate

system to this forcing is therefore:

l ¼ DT2X=DF2X

In this way, the anthropogenic contribution to

radiative forcing can be quantified as a figure

of global temperature change. The magnitude

and impacts of climate change are strongly

dependent on climate sensitivity, so there is a

real and immediate need to quantify uncertainty

associated with sensitivity in climate projec-

tions. Andronova and Schlesinger (2001) state:

If DT2x is less than the lower bound given by the

Intergovernmental Panel on Climate Change

(IPCC) then AICC (anthropogenic induced climate

change) may not be a serious problem for humanity.

If DT2x is greater than the upper bound given by the

IPCC, then AICC may be one of the most severe

problems of the 21st century. (Andronova and

Schlesinger, 2001: 22,605)

Climate sensitivity can be determined using a

perturbed physics ensemble (eg, Piani et al.,

2005) in which the same atmosphere-ocean glo-

bal climate model (AOGCM) is run numerous

times with slightly altered parameters, or using

an ensemble of different AOGCMs (eg, Yoko-

hata et al., 2008). In addition to inheriting the

uncertainties of the emissions scenario, differ-

ences in the design of AOGCMs, such as the ver-

tical and horizontal resolution of the atmosphere

and ocean and the parameterization of various

processes, and uncertainties regarding radiative
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forcing (Tanaka et al., 2009) introduce further

uncertainty into the calculation.

AOGCM experiments provide one measure of

sensitivity. Much work has been carried out on

‘constraining’ estimates of climate sensitivity

using twentieth-century observations (Andronova

and Schlesinger, 2001; Knutti et al., 2002).

Palaeoclimate data has also been used to deter-

mine sensitivity to past changes in forcing

(Watson, 2008). Such research is now being used

as a method of validating AOGCMs, the hypoth-

esis being that if AOGCM climate sensitivity

matches the climate sensitivity obtained from

study of palaeodata, then greater confidence can

be placed in the estimate (Edwards et al., 2007;

Hoffert and Covey, 1992). Of course, as the

anthropogenic forcing influencing climate at

present is unprecedented, non-linear feedbacks

may not operate in the same manner in palaeocli-

mates as they will under doubled CO2 forcing.

Combining constraints from different palaeocli-

mates is likely to be more reliable than looking

at single eras (Covey et al., 1996), but using dif-

ferent constraints or combinations thereof yields

different values for climate sensitivity, adding

an additional layer of uncertainty.

Ranges for climate sensitivity vary depending

on the method employed (Figure 3). For the full

range of emissions scenarios, the range of global

climate sensitivity is 1.4–5.8�C (a normal distri-

bution, with a 5–95% probability range of

2–4.5�C, and a most likely value of around

3�C) (IPCC, 2007). Wigley and Raper (2001)

take account of other key uncertainties but main-

tain that all emissions scenarios are equally

likely, to show that the probabilities of warming

Figure 3. A summary of results from climate sensitivity experiments
Source: IPCC (2007: Figure 9.20)
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are low on both tails of the distribution and, in

the absence of climate mitigation, the 90% prob-

ability of warming is more likely to be in the

range 1.7–4.9�C.

3 Natural variability

Even with some idea of how sensitive the cli-

mate system is to increased greenhouse gas for-

cing, there are barriers to understanding how the

climate will ultimately respond. The climate sys-

tem is a complex, non-linear, dynamical system,

so understanding the behaviours of various com-

ponents of the system does not imply under-

standing of the overall behaviour. As the

system evolves it is influenced by natural varia-

tions, which are limited in their predictability.

For example, the dominant influence on climate

in western Europe, the Atlantic Ocean (Sutton

and Hodson, 2005), is affected by modes of

variability operating on a range of timescales

from decadal (eg, El Niño/Southern Oscillation)

to thousands of years (eg, thermohaline circula-

tion). The predictability of these modes has been

a topic of study for some time (eg, Davies et al.,

1997; Graham, 1994; Marshal et al., 2001) and

some modes have been shown to be quasi-

predictable. For example, Griffies and Bryan

(1997) found that the North Atlantic Oscillation

may possess predictability in the order of a

decade or longer, but not beyond that.

Such variability is naturally forced, as these

oscillations of the climate system, which operate

on a range of timescales, are present even in a

stable climate not undergoing any anthropogenic

forcing. The signals of anthropogenic climate

change are then superimposed on this back-

ground of natural variability. However, esti-

mates of natural climate variability are small

relative to the warming observed over the twen-

tieth century (IPCC, 2007).

4 Climate feedbacks and ‘surprises’

It is also possible that increased GHG emissions

may interfere with natural climate modes and

processes. Climate feedback mechanisms exist

which can amplify or diminish the effects of a

change in forcing. One example is the effect

of melting Arctic and Siberian permafrost

(Anisimov, 2007). As permafrost melts, soil

carbon and methane may be released, resulting

in further warming. This may lead to further

thawing, resulting in an amplification of the

original signal known as a positive feedback.

Kennedy et al. (2008) suggest that methane

released from permafrost may have been a trig-

ger for deglaciation at the end of the Marinoan

‘snowball’ ice age (*635M BP).

There is much debate about the presence of

‘tipping points’ in the climate system (Hansen,

2006). For example, there may be a critical

threshold in the climate-carbon cycle system,

where regional drying leads to the loss of large

tracts of the Amazon Rainforest (Cox et al.,

2004). The loss of such a large carbon sink

would lead to further warming, and further

forest loss. Similarly, global climate model

(GCM) simulations show that strong surface

freshening in the North Atlantic, which may

be brought about by melting glaciers, could

force a reduction in the strength of thermoha-

line circulation (THC). Such a reduction could

occur on a timescale of decades (Hulme and

Carter, 1999), or the onset could be even more

rapid, taking place over just a few years (Alley

et al., 1993). It has been shown that THC

resembles a non-linear system in many ways,

becoming increasingly sensitive to small per-

turbations as its critical threshold is neared,

and thus less predictable (Knutti and Stocker,

2002). Palaeodata suggests that THC reduction,

triggered by the sudden release of meltwater

from Lake Agassiz (Carlson et al., 2007), may

have caused the Younger Dryas cold event

(11,500 BP).

Anthropogenic effects on natural climate var-

iation could manifest in many ways, from a slow

shift from a phase of low activity to one of high

activity to a sudden jump from one state to

another (Figure 4). There may even be a
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number of states that the system changes

between. Such jumps are also known as abrupt

events or climate surprises and the Younger

Dryas cold event would be an example of such

an event. Palaeodata and modelling can give an

indication of possible outcomes, making such

uncertainties ontological as they are due to the

non-deterministic nature of the system but are

not entirely unknowable. The more model runs

considered, the larger the range of potential

outcomes that can be simulated. However,

models cannot be expected to reveal the full

range of potential surprises as, even at their

most complex, they represent a simplification

of the actual system.

5 External forcing

Future external forcing may come from unex-

pected solar variability or volcanic eruptions,

which can have a significant impact on the cli-

mate system. Major volcanic eruptions such as

El Chichón in 1982 and Mount Pinatubo in

1991 resulted in temperature anomalies of –

0.2�C and –0.4�C, respectively, in the year fol-

lowing the eruptions (McCormick et al., 1995).

Simulations show that the impacts of ‘super-

eruptions’ could be much greater, potentially

reducing global temperatures by up to 10�C
(Jones et al., 2005). While this initial effect may

last only for a few months, it could take several

decades for temperatures to return to normal.

Such forcings are unlikely ever to be predictable

in a deterministic sense and are thus classed as

an unknowable uncertainty.

Yet some form of action is required to reduce

the risk of crossing critical thresholds within the

climate system, and information is needed to

plan adaptation strategies. Past observations of

the climate are no longer reliable indicators of

future behaviour. Therefore, although climate

models can never take account of every uncer-

tainty, they remain a vital source of information

about future climates.

IV Uncertainty in climate models

Emissions scenarios provide the primary

input used to drive a GCM. Due to computa-

tional limitations, GCM resolution tends to

be quite coarse, in the order of 1.2–4� (Gen-

thon et al., 2009). Various methods can be

used to bridge the gap between GCM output

and regional response, but the focus of this

review is regional climate modelling. RCMs

have become an increasingly important source

of information for environmental planners,

Periodic varia�on

Quasi-periodic varia�on

Discon�nuity or "Jump"

Downward trend

Alternate stable state

Increasing variability

Time

Cl
im

at
e 

pa
ra

m
et

er
 v

al
ue

Figure 4. Types of climate variations
Source: Marcus and Brazel (1984)

654 Progress in Physical Geography 34(5)



providing the necessary, detailed information

over a limited area. However, an RCM is but

one part of the modelling process. It is part

of a chain of procedures in which uncertainties

and inferences at each level can impact out-

comes at subsequent levels. This chain has

been referred to as the ‘cascade of uncertainty’

(Mitchell and Hulme, 1999) or the ‘uncer-

tainty explosion’ (Henderson-Sellers, 1993;

Jones, 2000b) (Figure 5).

Both GCMs and RCMs are impacted by

uncertainties which, if left unaccounted for,

weaken confidence in end projections and limit

the usefulness of those end projections in plan-

ning and policy decisions. Ultimately, choices

must be made about which driving GCM and

RCM to use, and for every choice there are com-

binations left unconsidered. Such uncertainties

must be recognized as an unavoidable part of cli-

mate modelling.

1 Epistemological uncertainty in
climate modelling

Epistemological uncertainties are influential in

both GCMs and RCMs, and uncertainties associ-

ated with clouds are a prime example of this

category of uncertainty. Clouds have a variety

of effects on both the radiation budget and water

balance, so it is highly important that models

reproduces them accurately. According to

Schwarz (2008: 439), ‘a 10% error in treatment

of clouds in the climate model would result in an

error of some 4.8 W/m2’. The type and height of

cloud determines the effect it will have. Thin,

high clouds such as cirrus clouds produce a pos-

itive forcing by trapping outgoing longwave

radiation. Low, thick clouds such as stratocumu-

lus have a cooling effect as they reflect sunlight

back into space (ie, the cloud albedo effect). An

increase in cloud amounts is projected as a

Increasing 
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Range of possible 
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Figure 5. ‘Uncertainty explosion’ of major typical uncertainties
Source: Jones (2000b)
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consequence of anthropogenic warming, but

specific cloud types and overall effects on sur-

face temperatures are unknown. However, the

sensitivity of clouds to warming can be assessed

through the analysis of observations and also

through the use of mesoscale models (Bony

et al., 2004).

There are two main reasons for the knowledge

gaps surrounding clouds. First, accurate satellite

observation records are quite short, with most

records commencing in the 1970s. The surface

observation record is longer but subjective. Only

clouds visible to the observer could be recorded,

so higher-level clouds hidden by low-level

clouds would not be noted (IPCC, 2007). Baker

and Peter (2008) suggest new observational and

laboratory programs are needed to fill cloud sci-

ence knowledge gaps and thus reduce epistemo-

logical uncertainty through further research.

Second, the large-scale effects of clouds are

actually the result of processes occurring on a

much smaller scale, and further research is

needed to characterize these processes. For

example, increases in concentrations of anthro-

pogenic aerosols such as sulphate and mineral

dust have both direct and indirect effects on

clouds by impacting on processes at this micro-

physical scale. New research (eg, Berg et al.,

2008; Khain et al., 2005; Lohmann, 2008) and

new data collection methods such as remotely

piloted aircraft (Lu et al., 2008) are helping to

close knowledge gaps and enable better model-

ling of clouds, which in turn enables better mod-

elling of the climate system.

As knowledge of the system increases, a new

problem emerges. AOGCMs require consider-

able computer resources, which are not limitless.

Therefore, decisions must be made about how to

focus computing power (Pope et al., 2007). To

maximize one attribute of the model it is neces-

sary to compensate in other areas. Presently, to

produce long and highly complex output, a

model would need to be run at a low resolution.

If high-resolution output is required, it is some-

times necessary to leave out or empirically

approximate processes rather than physically

resolve them. Leaving out a process can have

an effect on the model’s performance, as demon-

strated by Senior (1999) who found the modelled

response of large-scale circulation changes sig-

nificantly when interactive radiative properties

are excluded from the model. An alternative is

to parameterize such processes. Instead of expli-

citly resolving the process in the model, a

scheme is developed to describe the impact of

the mechanism on the atmospheric system. The

effect of the subgrid-scale processes is approxi-

mated in terms of resolved grid-scale variables.

A number of issues arise from the use of such

schemes. First, parameterization schemes are

not equally effective. Convective cloud forma-

tion is an example of a process that should not

be excluded from models, as deep convection

significantly affects the stability of the large-

scale circulation (Emanuel et al., 1994). But the

scale on which convective clouds form can be

less than a kilometre. To model the processes

occurring at this scale using the equations of

fluid motion would require much finer grid res-

olution than is currently feasible. So a scheme is

created which simulates the collective effects of

convective clouds in each model grid cell. How-

ever, as noted by Randall et al. (2003), some of

the assumptions the parameterization scheme

makes to calculate these effects are difficult to

verify, and additionally may not be valid in a

warmer world. Different schemes vary in design

and assumptions, and as a result they vary in skill

also (eg, Wang and Seaman, 1997).

The second issue is that whether or not the

effect of the subgrid-scale processes will be the

same under different forcing conditions is

impossible to say. Parameterizations are con-

structed based on our knowledge of the atmo-

spheric system as it currently is, but the

processes are not physically represented in the

model. Under uncertain forcing conditions, dif-

ferent parameterizations could yield different

outcomes and, in the absence of empirical data

for comparison, they must all be treated as
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plausible projections of future climate. This

issue can be seen as a form of the problem of

induction (Frame et al., 2007). In inductive

reasoning, a series of observations are made

and a claim inferred based on them. But the

observations made in themselves do not estab-

lish the validity of inductive reasoning. The

observation-based knowledge that climate mod-

els partially use relies on the uniformity of

nature: the concept that the future will resemble

the past. The problem is that the future will obvi-

ously not resemble the past in all respects, and a

priori we cannot specify the respects in which

the resemblance holds. Keeping in mind these

considerations, the task of modelling future

climate scenarios at all may at first seem quite

fruitless. Fundamentally, however, models are

based on established physical laws, and have

proven skill at representing important features

in both past and present climate, as demonstrated

by the climate sensitivity experiments referred

to earlier. There is good reason to be confident

that models provide credible estimates of future

climate, but also much scope to improve upon

epistemological uncertainties through further

research.

2 Ontological uncertainty in
climate modelling

As the climate system has similarities with a

non-linear, chaotic system, unpredictability

arises in two distinct ways. If a chaotic system

evolves n number of times from slightly differ-

ent starting conditions, n different outcomes can

be expected. Although the paths taken may at

first be similar, over time errors in initial condi-

tions amplify and make it impossible to forecast

with certainty. For this reason, it is not possible

to forecast individual weather events beyond the

order of a week. This problem, sensitivity to ini-

tial conditions, is referred to as predictability of

the first kind.

There is also predictability of the second kind,

relating to boundary conditions. The RCM

domain has a certain boundary with the sur-

rounding environment, and the model must

consider processes in this boundary region also.

These conditions can never be precisely speci-

fied as there is no unique solution to the mathe-

matical problem posed by RCM boundary

conditions (Rummukainen, 2010). Although it

has been the focus of less research than the first

kind of predictability, seemingly small perturba-

tions to boundary conditions can also lead to sig-

nificantly different future behaviour (Chu, 1999;

Collins and Allen, 2002).

Weather prediction was identified as an initial

and boundary problem early in the twentieth

century. Bjerknes (1914) recognized that if one

could make some simple assumptions, one could

arrive at integrable systems of dynamic and ther-

modynamic equations to represent meteorologi-

cal phenomena. He also appreciated the need for

accurate, reliable information on the state of the

system, to use in solving such systems of equa-

tions. Bjerknes (1919) believed that the most

important advance in weather forecasting would

be the development of a close-knit network of

weather stations to provide high-quality data.

Although forecasts at the time were of the order

of hours, not even days, Bjerknes understood

that forecasts would be far more reliable if the

observations on which they were based were

accurate. This data quality issue persists today

on a different scale in climate science.

For control runs (simulations of present-day

climate used to validate models) RCMs can take

these conditions from gridded observational

data. They typically include wind components,

temperature, water vapour and cloud variables

and surface pressure (Giorgi, 2006). For future

projections, RCMs take initial and boundary

conditions from a parent GCM, a technique

known as nesting (eg, Antic et al., 2006; Ding

et al., 2006; Ju et al., 2007). To further increase

accuracy in driving conditions, a double-nesting

approach uses global output to drive a second

model, perhaps an atmosphere-only GCM, over

an intermediate domain. The output from that
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experiment is then used to drive the RCM (eg,

Gao et al., 2006; Im et al., 2006). Two-way nest-

ing is another variation, in which RCM infor-

mation is allowed to feed back into the GCM

(eg, Barth et al., 2005), to improve representa-

tion of the general circulation (Lorenz and

Jacob, 2005). As the GCM has its own inherent

flaws, boundary and initial conditions will

always be imperfect. Although the imperfec-

tions themselves arise through epistemological

uncertainties in the parent GCM, they are a

source of ontological uncertainty for RCMs

because they detract from the predictability

of the system.

Additionally, the various fluxes of heat, water

and momentum need to be in dynamic and ther-

modynamic equilibrium for initial conditions to

be valid. It is not enough for the initial climate

of the model to resemble the real climate; it also

must be stable. Typically, models are given a

‘spin-up’ period during initialization, during

which the faster adjustments (ie, 50-year time-

scale) take place and stabilize. But a slower

adjustment also takes place, as the deep ocean

adjusts to surface heat and water flux imbalances.

During initialization, models are allowed to reach

a stage where this adjustment, known as ‘climate

drift’ (eg, Bryan, 1998; Dirmeyer, 2001), is so

slow as not to interfere significantly with the

interpretation of climate change signals. Compu-

tational demands make it unrealistic to initialize

the model over a timescale so long that the deep

ocean adjustments fully stabilize, therefore a flux

adjustment may be required to minimize climate

drift and prevent the model from sliding into

unrealistic climate states. Due to improvements

in the simulation of the large-scale heat balances,

many of the most recent generation of models

employed in the IPCC Fourth Assessment Report

do not require a flux adjustment and instead

maintain their own physical consistency. Further

research into the behaviour of the climate system

clearly has the potential to improve the realism of

climate model simulations, though models will

always be a simplification of the real system.

3 Intermodel variability

Model design at all levels is a subjective process.

Choices must be made about what to include in a

climate model, what to exclude, what to parame-

terize and how, and each decision introduces

uncertainty. Intermodel variability, variation in

projections due to choice of model, is an impor-

tant issue. Figure 6 compares control output for

Ireland from 19 simulations obtained through

the EU PRUDENCE (Prediction of Regional

scenarios and Uncertainties for Defining Eur-

opeaN Climate change risks and Effects) (Chris-

tensen et al., 2002) data archive to observations

for 1961–1990 and illustrates this spread in out-

comes due to the different GCM drivers and

parameterizations employed by each model.

Such differences can be quite significant; a bias

of þ2�C in one month is quite large when one

considers that the observed range of temperature

across the whole year is 1.8�C. Additionally,

even when the same GCM driver is used, differ-

ences in RCM design can result in quite different

outcomes (Figure 7).

The choice of which model or models to uti-

lize is not arbitrary, as it can be based on assess-

ments of model skill – eg, CMIP (Coupled Model

Intercomparison Project) and PRUDENCE. But

this can never be a truly objective choice. Blyth

(1972) distinguishes between knowledge,

defined as beliefs held by the entire scientific

field, and subjective beliefs, the personal beliefs

of individuals. A knowledge-guided decision

may use a measure of model skill acknowledged

by the modelling community, but there are many

such measures and no designated index for inter-

comparison. So the choice must be partially sub-

jective as the decision of how to assess skill is

made by the individual and not commonly

agreed by the scientific field.

Model performance can be interpreted in

different ways and quantified using a variety

of metrics, using the observed climatic records

for comparison. Multiple statistics of climate

must be considered to provide a full picture
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Mean annual temperature climatology for Ireland

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12

Month

Te
m

pe
ra

tu
re

 (�
C)

Mean annual precipita�on climatology for Ireland

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12
Month

Pr
ec

ip
ita

�o
n 

(m
m

/d
ay

)

Observations HadRM3P(a)(HadAM3P) HadRM3P(b)(HadAM3P) HadRM3P(c)(HadAM3P)

PROMES(HadAM3H) RACMO(HadAM3H) CHRM(HadAM3H) CLM(HadAM3H)

REGCM(HadAM3H) REMO(HadAM3H) RCAO(HadAM3H) HIRHAM(a)(HadAM3H)

HIRHAM(b)(HadAM3H) HIRHAM(c)(HadAM3H) HIRHAM(ECHAM5) ARPEGE(a)(Observed SSTs)

ARPEGE(b)(Observed SSTs) ARPEGE(c)(Observed SSTs) RCAO(ECHAM4-OPYC) HIRHAM(ECHAM4-OPYC)

Figure 6. Control output for Ireland from 19 simulations obtained through the EU PRUDENCE Project
for 1961–1990
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of model skill. A change in the mean can have a

disproportionate effect on the extremes of a

distribution because other characteristics such

as the variance are also altered by the mean

change. Therefore, a model which predicts

mean seasonal trends accurately may not pos-

sess similar skill at modelling extremes (eg,

Hanson et al., 2007).

Aside from the subjectivity of methods that

account for model differences, there are a num-

ber of philosophical arguments as to whether any

of these methods are truly legitimate. The terms

‘validation’, ‘verification’ and confirmation’ are

often encountered in climate modelling litera-

ture, and all are commonly used refer to the gen-

eral process of comparing a climate model’s

output over a control period to the observed

climate record as a means of establishing

reliability, but in the philosophical sense each

has a distinct meaning and it is possible for a

model to be validated without essentially being

verified. Validation means that a model has met

specified performance standards and is therefore

suitable for a particular use (Rykiel, 1996), while

verification refers to the demonstration of the

‘truth’ of the model as a basis for reliability.

However, there are fundamental barriers to the

validation and verification of computer models

of natural systems.

First, it is impossible to demonstrate the truth

of any proposition except in a closed system

(Oreskes et al., 1994). A natural system is not

closed. It is not isolated from the environment,

but can instead be influenced by events outside

of the conceptual boundaries imposed on it for

the purposes of study. It is also dynamical, with
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Figure 7. Projections of mean winter (DJF) temperature (K) for Europe for 2071–2100 by REMO (left)
and HIRHAM (right), both driven by HadAM3H GCM under A2 emissions scenario (273.15K ¼ 0�C). Note
differences in projections across Scandinavia. Data is obtained from the EU PRUDENCE data archive
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components that change over time. For example,

one cannot assume that errors in the future pro-

jections of a model will be of the same magni-

tude as those in the hindcast, as errors may not

be constant in time and may change under differ-

ent forcing conditions.

Second, it has been argued that techniques

which use past observations to calibrate future

model projections are misleading as the model

is simulating a state of the system that has not

been experienced before (Stainforth et al.,

2007a). Therefore verification of a model’s per-

formance can only ever be partial. To expand on

this definition of verification, one could consider

other criteria such as ability to simulate changes

in palaeoclimates. A model that simulates both

the recent and distant past effectively is more

likely to provide credible future scenarios than

a model that has been tested only for the twenti-

eth century.

Third, a deficiency in a model could arise for

a number of reasons. A temperature bias, for

example, could be due to an error in how the

model handles cloud cover, or in how the topo-

graphy is resolved. The error could even be the

result of a summation of different errors. To

definitively locate the source of the error, it

would be necessary to run the model in question

repeatedly, varying a particular parameteriza-

tion each time while holding everything else

constant. This is not viable for the many end-

users who work with RCM output but not with

the model itself.

Even if model biases and errors cannot be

comprehensively accounted for, knowing they

are present is valuable information in itself. The

propensity for errors could serve as a qualitative

measure of model reliability. However, agree-

ment between model output and observed cli-

mate does not signify that the model is an

accurate representation of the real system, and

this must be acknowledged. But the model

should reflect the behaviour of the real system

if it is to be suitable for contributing to scenario

development

V Working with uncertainty:
ensembles and probabilities

A model can have skill at modelling one aspect

of the climate and lack skill at modelling

another. The model that simulates average sea-

sonal trends accurately may not give a true pic-

ture of future changes in extreme events, which

due to their sudden nature can cause much

greater damage over a short space of time com-

pared to a gradual change. Results that vary

depending on choice of model are not very reli-

able, and decisions need to be based on robust

findings. For one particular variable or location,

a single best model may perform well, but

when considering all aspects of climate and

uncertainty, a combination of several different

models, known as an ensemble, can provide

better overall skill and reliability (Tebaldi and

Knutti, 2007). Ensemble techniques are in

widespread use in the climate modelling com-

munity and have been used to characterize the

spread of climate responses for a range of vari-

ables, impacts and regions.

1 Multimodel ensembles

One approach, suggested in Mitchell and Hulme

(1999), is to combine multiple predictions from

different models to form a multimodel ensem-

ble. Ideally, individual ensemble members

should possess high skill by themselves and be

independent of one another. However, such

ensembles are also known as ‘ensembles of

opportunity’ (Stone et al., 2007) as members are

sometimes chosen more for availability than

demonstrated skill, an approach which has the

potential to generate misleading output (Allen

and Stainforth, 2002). Multimodel ensembles

allow a range of different models to contribute

to the overall projection so that intermodel varia-

bility is represented in the spread of the projec-

tions. It also helps to account for intramodel

variability, as a more complete range of possible

future climate scenarios is sampled.
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The precise reason why an ensemble so

often performs better than the individual ‘best’

model is debatable. Doblas-Reyes et al. (2005)

attribute the improvement to the use of differ-

ent models and increased ensemble size, while

Hagedorn et al. (2005) states that a large part of

the ensemble’s superiority is due to error can-

cellation, and argues that if a model existed

that performed poorly in every measure, it

could only add skill in this way. Conversely,

Weigel et al. (2008) argued that even a poor

model can add skill, if the model’s poor perfor-

mance is due to overconfidence and not low

potential predictability. It seems that both stud-

ies arrive at a similar conclusion: there is noth-

ing to be gained by including models that are

fundamentally flawed in their performance. If

a poor model is taken to mean an overconfident

one, then this model can be compensated for

using ensembles; but if we take poor to mean

a model that struggles to represent the climate

system properly, then only revisiting the

mechanics of the model and looking for ways

to improve its parameterizations can truly

enhance such a model.

2 Perturbed physics ensembles

An ensemble may also consist of different runs

of the same model (Barnett et al., 2006), each

with perturbed versions of the original model

physics. In theory, by varying the physics para-

meters of the model uncertainties due to parame-

terization choice are represented in the spread of

the output. The key advantage is that the sam-

pling of uncertainty is more systematic than in

a multimodel ensemble, whose members are

chosen on an opportunistic basis (Murphy

et al., 2007). One can choose a single skilful

model and run many iterations rather than using

many models of varying skill. Of course, this

requires a subjective decision to be made about

which single model to use, and the most skilful

model in the present may not remain skilful

under future forcing conditions.

While a perturbed physics approach is highly

useful for quantifying variability within the

model, it cannot characterize intermodel varia-

bility like a multimodel ensemble. The optimal

approach to would be to use a multimodel

perturbed-physics ensemble. The traditional

multimodel ensemble is formed by combining

output from single iterations of many different

models to construct a distribution of climate

parameters. Combining perturbed physics distri-

butions from individual models rather than single

outputs would give a fuller sample of uncer-

tainties, an approach like that of Christensen

et al. (2001), which used two eight-member

ensembles from different RCMs. A larger

ensemble will naturally capture a greater pro-

portion of uncertainty.

The distributed computing project climate-

prediction.net has been used to create multithou-

sand member GCM ensembles (eg, Piani et al.,

2005; Sanderson et al., 2008; Stainforth et al.,

2007b) but, to date, RCM perturbed physics

ensembles have been much smaller in size.

Examples include Lynn et al. (2009),

Lucas-Picher et al. (2008) and Yang and Arritt

(2002), which featured ensembles of 8, 10 and

25 members, respectively. Due to the time and

computer resource constraints associated with

regional modelling and the limitations of current

computing standards, it is just not feasible to

produce RCM ensembles of similar size to the

current crop of GCM ensembles. Hawkins and

Sutton (2009) note the importance of targeting

investments in climate science on the areas with

the greatest potential for reducing uncertainty

and indeed it may be worth focusing on the prob-

lem of computer power. Better resources would

enable more complex models to be run, as well

as larger ensembles.

3 Ensemble methodologies

For ensemble scenarios to be reliable, it is

important that the performance of individual

members is assessed. It is also essential that the
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methods used to generate ensembles are valid

(Leung et al., 2003) There is a level of subjectiv-

ity in ensemble construction, and to formulate

robust climate scenarios, assumptions need to

be justified.

A key question is whether to use information

about a model’s performance in the present to

constrain the influence of its future output on the

overall ensemble. One can consider all outcomes

as equally likely or assign weights to models

based on a performance criterion. Reliability

Ensemble Averaging (REA) (Giorgi and Mearns,

2003) is one such quantitative approach, which

assigns a weighting function to each model based

on their performance at simulating the present

climate, and their convergence. As bias or dis-

tance from the simulated ensemble mean grows,

the model is deemed less reliable. Yet skill in the

present does not necessarily equate to skill in the

future. It is impossible to state with certainty how

a model will perform under unprecedented for-

cing conditions. However, it is hard to see how

a model lacking skill at representing the current

climate would have better skill at modelling a

future climate. Therefore, while there is an argu-

ment to be made for constraining poorly per-

forming models based on present-day skill, one

must not mistake present-day skill for a guaran-

tee of future skill.

Model convergence is the second criterion

used in the REA method: the further a model’s

result is from the ensemble mean, the less reli-

able it is taken to be. But convergence may not

be a robust reliability criterion, as there may be

underlying similarities that lead a group of mod-

els to converge. Similarities could include shar-

ing the same GCM driver or dynamical core, or

having a key parameterization scheme in com-

mon. Alternatively, the absence or inclusion of

certain parameterizations may be key. Rockel

and Woth (2007) studied changes in wind speed

over Europe using an ensemble of RCMs, and

discovered that the absence of a gust parameter-

ization leads to much poorer simulation of high

wind speeds or ‘storm peaks’. Additionally, as

model skill can vary with location (Haylock

et al., 2006; Hellstrom et al., 2001; Jacob et al.,

2007), a model can be an outlier in one region

but not in another. The reliability of the model

convergence criterion depends on the indepen-

dence of the models in the ensemble, which is

often difficult to establish. Therefore it would

be unwise to discount a model only because

other models disagree with it.

As our understanding of the climate system,

and the climate models we design based on this

understanding are incomplete, we must assume

that all well-specified models provide plausible

future scenarios even though they differ in

their design and outcomes, unless a clear and

justifiable reason to omit a particular model

is found. It is better to exercise caution and

work with a large range that the ‘true’ outcome

is likely to lie within than to be overconfident

and work with a smaller range that may not

contain it at all. The range of outcomes sup-

plied by climate models becomes part of a chain

of inferences; regional effects are inferred from

global effects which are in turn used to infer and

prioritize adaptive decisions. In the words of

Frame et al. (2007: 1986), we ‘run the risk of

building inferential edifices on unstable founda-

tions’, a situation best avoided where investment

decisions must be made.

4 Ensembles with probability

Approaches like the REA technique are quanti-

tative but not probabilistic. An advantage of

such a technique is that one avoids making

assumptions about distributions of factors,

which is required for a probabilistic approach.

But probabilities are very useful in climate sci-

ence. Patt and Dessai (2005) investigated how

people link descriptive phrases with probability

ranges and found that they use intuitive heuris-

tics rather than formal definitions. Given the

same descriptive terms to describe a high-

magnitude event and a low-magnitude event,

people interpret the language to mean the high-
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magnitude event is less likely, leading them to

actually underestimate the damage that could

be expected and under-respond to the threat of

the high-magnitude event. The potential for

biased interpretation can be lessened by utilizing

both numerical probability ranges and probabil-

ity language. A similar approach is used in the

UK Climate Projections project to quantitatively

assess the probability attached to a variety of cli-

mate risks (Willows and Connell, 2003).

Probabilistic methodologies have a history of

use within short- and medium-range weather

forecasting, so their application to climate

projections is a logical step. Räisänen and Palmer

(2001) demonstrate how a GCM ensemble can

be treated as a probabilistic forecast, with inter-

model uncertainty characterized by the ensem-

ble dispersion. Furthering this methodology,

one can utilize probability distribution functions

(PDFs) or cumulative distribution functions

(CDFs) as a technique for quantifying uncer-

tainties in RCM output as well as GCM (Ghosh

and Mujumdar, 2009).

The probabilities used by climate change

researchers are not classical frequentist prob-

abilities. They would be better defined as

Bayesian probabilities (Dessai and Hulme,

2004; Smith et al., 2009). Bayesian probability

is very applicable to climate change simula-

tions as it assigns probability to propositions

that are uncertain. This methodology interprets

probability as a measure of a state of knowl-

edge. But the ‘state of knowledge’ can be sub-

jective. For example, Bayesian statistics could

be used to make a quantitative determination of

climate change impacts, but it would be based

on a prior assessment of the probability of cli-

mate change. This assessment would have to be

subjective, and the use of different yet equally

plausible priors would yield different out-

comes (Barnett et al., 1999). However, as

Berliner et al. (2000) assert, Bayesian statistics

acknowledges that it is imperfect by stating the

assumptions and quantifying them so that the

sensitivity of the results can also be assessed.

Objective Bayesian probability also exists

(Berger et al., 2001), which utilizes a non-

informative, non-subjective prior distribution.

But this can lead to paradoxes as outlined by

Kriegler (2005), who notes that if one assumes

complete ignorance regarding future atmo-

spheric CO2 concentration, one cannot also

make this assumption for the associated radia-

tive forcing as it is logarithmically dependent.

Taking a strictly objective view can also lead to

the exclusion of qualitative information which

has the potential to be very valuable.

Different researchers have adopted variations

of the methodology, some more objective and

some more subjective. An objective approach

was used by Jones (2000a), which relied on

properties of classic probability distributions. If

the uncertainties associated with various sources

are taken to be uniform and independent, then

when multiplied together they will yield a

peaked probability distribution for key climatic

variables. In practice, it is common to assume

a uniform distribution over the appropriate range

of values for the prior distribution.

Tebaldi et al. (2005) proposed a Bayesian

analysis approach which would formalize

the performance and convergence criterion

that the REA method first quantified. Uni-

form, uninformative prior distributions are

adopted, to avoid making assumptions about

the prior distributions that could be construed

as subjective. Tebaldi et al. (2004) proposed a

variant of the methodology in which conver-

gence could be weighted differently relative

to performance.

Both objective and subjective methodologies

have their merits. If the avoidance of assump-

tions is paramount, then objective methods

would be more appropriate. For some research-

ers, this is extremely important as it is perceived

that subjective choice introduces further uncer-

tainty to the problem. Conversely, there is an

argument that by treating model outcomes as

equally likely, even when the evidence from

control runs suggests differences in skill, an
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important opportunity for quantifying uncer-

tainty has been neglected. Inevitably, the choice

between objective and subjective probabilities

introduces an additional layer to the cascade of

uncertainty.

VI Conclusions

In the words of Collins (2007: 1958), ‘the very

fact that a team of people can produce a simula-

tion that bears a passing resemblance to the

world we live in is, in retrospect, a significant

feat’. Yet a simulation can never capture the

complexities of the real system. Any numerical

model is limited by the knowledge the scientist

has about the real system, and the computing

resources available to run it. As a result, uncer-

tainty is unavoidable in regional climate scenar-

ios and indeed in any geographical discipline

which utilizes numerical modelling.

As adaptation strategies may require costly

infrastructure it may at first seem unwise to use

RCM output to inform such decisions. Strategic

decisions may be flawed if decision-makers

assume risks are well characterized when they

are not. However, the cost of inaction is likely

to be far greater than the cost of early, adaptive

measures (Stern, 2006). If climate sensitivity is

at the upper end of the range specified by the

IPCC, steps towards adaptation must be taken

to reduce the risks to people, infrastructure and

the natural environment.

The uncertainties in regional climate model

output must be identified and acknowledged for

the information to be put to best use using

approaches appropriate to the deep uncertainty

of the situation (Lempert et al., 2004). By work-

ing with a range of models, decision-makers can

build strategies that cater for a range of plausible

futures. Rather than looking for an optimum

strategy which depends upon precise projections,

decision-makers can build robust strategies that

are open to critique and revision (Baer and

Risbey, 2009) and will be beneficial under a

range of different conditions (Popper et al., 2005).

Uncertainty in regional climate model out-

put cannot be eliminated. What is more, the

growing and present concern of climate change

means that we cannot wait until the tools are

perfected before making decisions about adap-

tation. Fortunately, uncertainty in RCMs can

be minimized, quantified and communicated

effectively, and, in spite of their uncertainties,

regional climate models can provide valuable

information for the robust decision-making

process.
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Räisänen J and Palmer TN (2001) A probability and

decision-model analysis of a multimodel ensemble of

climate change simulations. Journal of Climate 14:

3212–3226.

Randall D, Khairoutdinov M, Arakawa A, and Grabowski

W (2003) Breaking the cloud parameterization dead-

lock. Bulletin of the American Meteorological Society

84: 1547–1564.

Rockel B and Woth K (2007) Extremes of near-surface

wind speed over Europe and their future changes as

estimated from an ensemble of RCM simulations. Cli-

matic Change 81: 267–280.

Rummukainen M (2010) State-of-the-art with regional cli-

mate models. Wiley Interdisciplinary Reviews: Climate

Change 1: 82–96.

Rykiel EJ (1996) Testing ecological models: The meaning

of validation. Ecological Modelling 90: 229–244.

Sanderson BM, Piani C, Ingram WJ, Stone DA, and Allen

MR (2008) Towards constraining climate sensitivity by

linear analysis of feedback patterns in thousands of

perturbed-physics GCM simulations. Climate

Dynamics 30: 175–190.

Schwartz SE (2008) Uncertainty in climate sensitivity:

Causes, consequences, challenges. Energy and Envi-

ronmental Science 1: 430–453.

Schwierz C, Appenzeller C, Davies HC, Liniger MA,

Muller W, Stocker TF, et al. (2006) Challenges posed

by and approaches to the study of seasonal-to-decadal

climate variability. Climatic Change 79: 31–63.

Senior CA (1999) Comparison of mechanisms of cloud-

climate feedbacks in GCMs. Journal of Climate 12:

1480–1489.

Smith RL, Tebaldi C, Nychka D, and Mearns LO (2009)

Bayesian Modeling of Uncertainty in Ensembles of

Climate Models. Journal of the American Statistical

Association 104: 97–116.

Stainforth DA, Allen MR, Tredger ER, and Smith LA

(2007a) Confidence, uncertainty and decision-support

relevance in climate predictions. Philosophical Trans-

actions of the Royal Society A – Mathematical Physical

and Engineering Sciences 365: 2145–2161.

Stainforth DA, Downing TE, Washington R, Lopez A,

and New M (2007b) Issues in the interpretation of

climate model ensembles to inform decisions. Philo-

sophical Transactions of the Royal Society A – Math-

ematical Physical and Engineering Sciences 365:

2163–2177.

Stern N (2006) The Stern Review Report on the Economics

of Climate Change. Cambridge: Cambridge University

Press.

Stirling A (1998) On the economics and analysis of diver-

sity. Science Policy Research Unit Electronic Work-

ing Papers Series 28. Brighton: University of

Sussex, 134 pp.

Stone DA, Allen MR, Selten F, Kliphuis M, and Stott PA

(2007) The detection and attribution of climate change

using an ensemble of opportunity. Journal of Climate

20: 504–516.

Sugiyama T (2005) Scenario analyses for the future cli-

mate regime. International Environmental Agree-

ments: Politics, Law and Economics 5: 1–3.

Sutton RT and Hodson DLR (2005) Atlantic Ocean forcing

of North American and European summer climate. Sci-

ence 309: 115–118.

Tanaka K, Raddatz T, O’Neill BC, and Reick CH (2009)

Insufficient forcing uncertainty underestimates the risk

of high climate sensitivity. Geophysical Research

Letters 36: L16709.

Foley 669



Tannert C, Elvers HD, and Jandrig B (2007) The ethics of

uncertainty: In the light of possible dangers, research

becomes a moral duty. Embo Reports 10: 892–896.

Tebaldi C and Knutti R (2007) The use of the multi-model

ensemble in probabilistic climate projections.

Philosophical Transactions of the Royal Society A –

Mathematical Physical and Engineering Sciences

365: 2053–2075.

Tebaldi C, Mearns LO, Nychka D, and Smith RL (2004)

Regional probabilities of precipitation change: A Baye-

sian analysis of multimodel simulations. Geophysical

Research Letters 31: L24213.

Tebaldi C, Smith RL, Nychka D, and Mearns LO (2005)

Quantifying uncertainty in projections of regional

climate change: A Bayesian approach to the analysis

of multimodel ensembles. Journal of Climate 18:

1524–1540.

Thomas JA, Telfer MG, Roy DB, Preston CD, Greenwood

JJD, Asher J, et al. (2004) Comparative losses of British

butterflies, birds, and plants and the global extinction

crisis. Science 303: 1879–1881.

van Asselt MBA and Rotmans J (2002) Uncertainty in

integrated assessment modelling. Climatic Change

54: 75–105.

van der Keur P, Henriksen HJ, Refsgaard JC, Brugnach M,

Pahl-Wostl C, Dewulf A, et al.(2008) Identification of

major sources of uncertainty in current IWRM practice.

Illustrated for the Rhine Basin. Water Resources Man-

agement 22: 1677–1708.

Vizcaino M, Mikolajewicz U, Jungclaus J, and Schurgers

G (2010) Climate modification by future ice sheet

changes and consequences for ice sheet mass balance.

Climate Dynamics 34: 301–324.

Wang W and Seaman NL (1997) A comparison study of

convective parameterization schemes in a mesoscale

model. Monthly Weather Review 125: 252–278.

Watson AJ (2008) Certainty and uncertainty in climate

change predictions: What use are climate models?

Environmental and Resource Economics 39: 37–44.

Weigel AP, Liniger MA, and Appenzeller C (2008) Can

multi-model combination really enhance the prediction

skill of probabilistic ensemble forecasts? Quarterly

Journal of the Royal Meteorological Society 134:

241–260.

Wiens JA, Stralberg D, Jongsomjit D, Howell CA, and

Snyder MA (2009) Niches, models, and climate

change: Assessing the assumptions and uncertainties.

In: Biogeography, changing climates, and niche evolu-

tion. Proceedings of an Arthur M. Sackler Colloquium

of the National Academy of Sciences, Irvine, Califor-

nia, USA, 11–13 December 2008. Washington, DC:

National Academy of Sciences, 19,729–19,736.

Wigley TML and Raper SCB. (2001) Interpretation of high

projections for global-mean warming. Science 293:

451–454.

Willows RI and Connell RK (eds) (2003) Climate Adapta-

tion: Risk, Uncertainty and Decision-making. UKCIP

Technical Report. Oxford: UKCIP.

Yang ZW and Arritt RW (2002) Tests of a perturbed phy-

sics ensemble approach for regional climate modelling.

Journal of Climate 15: 2881–2896.

Yokohata T, Emori S, Nozawa T, Ogura T, Kawamiya M,

Tsushima Y, et al. (2008) Comparison of equilibrium

and transient responses to CO2 increase in eight state-

of-the-art climate models. Tellus Series A – Dynamic

Meteorology and Oceanography 60: 946–961.

670 Progress in Physical Geography 34(5)



Copyright of Progress in Physical Geography is the property of Sage Publications, Ltd. and its content may not

be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written

permission. However, users may print, download, or email articles for individual use.


