Introduction to Geographic Information Systems

- I. Basic Terminology
 - A. Geographic Information Systems (GIS)
 - 1. Preliminary Ideas
 - a. maps = models of the Earth
 - (1) Traditional maps paper drawings / models of the Earth
 - b. map distribution = spatial distribution
 - c. computers + digital information
 - d. computer assisted cartography (CAC) digital maps
 - e. computer assisted drafting (CAD) digital drawings
 - 2. Definition
 - a. Computerized data input system that collects and processes spatial map data
 - b. A data storage and retrieval system that organizes spatial data (database)
 - c. A data manipulation and analysis system (mathematical and statistical tasks)
 - d. Report subsystem (graphic output = digital map, database tables)
- GIS = "capture, store, query, analyze, and display geographic data"
 - B. Other Terminology
 - 1. Cartographic process data collection and map compilation
 - 2. Map Features
 - a. points
 - b. lines
 - (1) straight line segments between two points
 - (2) polylines multiple segmented lines
 - polygons lines that enclose areas
 - 3. Map Layers

C.

- a. layers of spatial data that form "tracing overlays" on top of one another
 - (1) e.g. geology, vegetation, buildings, soil, etc.
- b. examples of layers or themes or coverages for any given map region
 - (1) topography
 - (2) geology
 - (3) population density
 - (4) roads
 - (5) streams
 - (6) vegetation
 - (7) soils.... etc.
- 4. Examples of Digital Data Sources
 - a. Digital Line Graphs (DLG) -
 - b. Digital Elevation Models (DEM) grid data over space, eg. elevation
 - c. Digital Photoquadrangles

- 5. Example GIS measurements from data
 - a. line lengths
 - b. polygon perimeters
 - c. polygon areas
 - d. spatial density (e.g. housing density per square mile)
 - e. frequency (the number of occurrences)
 - f. map vs. ground distances
 - g. angles between lines
- 6. LIS = land information systems
- 7. GPS = global positioning systems satellite-based location system
- 8. Geodesy measurement and mapping of the Earth's surface
 - a. Geodetic framework position and elevation of points on the earth's surface
- II. Introduction to Spatial Data
 - A. Spatial Coordinate System
 - 1. Longitude and Latitude
 - a. Angular coordinate system relative to the Equator and Poles
 - 2. UTM = Universal Transmercator (northings and eastings in meters)
 - a. Linear cartesian coordinate system relative to North-South and East-West baselines- measured in meters
 - 3. State Plane = "State Plane" (northings and eastings in feet)
 - a. Linear cartesian coordinate system relative to North-South and East-West baselines- measured in feet
 - 4. Map Projection
 - a. Problem: the Earth is 3-D and spherical while paper maps and computer screens are 2-D
 - (1) How to project a 3-D object to a 2-D surface?
 - b. Multiple map layers must be in the same projection if they are to appropriately line-up in space
 - (1) e.g. can't overlay a geologic map in State Plane ontop of a soil map in Lat-Lon
 - B. Types of Spatial Data
 - 1. Discrete Features isolated map entities that are not connected
 - a. e.g. a water well = discrete point feature
 - b. e.g. a road = discrete polyline feature
 - 2. Continuous Features spatially distributed data across the map
 - a. e.g. rainfall / precipitation, bedrock geology, topography / elevation
 - 3. Map Features
 - a. points, lines, polygons
 - 4. Feature Attributes
 - a. data attached to points, lines, polygons
 - (1) e.g. a point rainfall collection station could have an average annual precipitation attribute attached to it.

- C. Data Models
 - 1. Vector data model points and their x,y map coordinates are used to create point, line, and polygon features
 - a. Topological Vector Data an expression of the spatial relationships between map features
 - (1) e.g. vector points define a line with a start point, end point, left side, and right side
 - b. Non-Topological Data map features that do not have topology associated with them
 - c. ESRI GIS Software Terms
 - (1) Coverage = topological vector map data
 - (2) Shapefile = non-topological vector map data
 - 2. Raster data model rectangular grid cells are used to represent spatial features
 - a. e.g. rainfall amounts in a watershed
- D. Attribute Data
 - 1. attribute data data that describe the characteristics of spatial features
 - a. e.g. a line that represents a road is attributed with the route number and type of highway (2 lane, interstate, etc.)
 - 2. Managing Attribute Data
 - a. Georelational database a collection of tables that are related to one another by common index attributes
 - (1) functions: search, data retrieval, data editing, creation of tabular reports
 - (2) Linking Tables tables linked to one another by common attributes or identification
- III. GIS Operations
 - A. Spatial Data Input
 - 1. Create Database
 - 2. Digitize map features in relation to a map projection and coordinate system
 - 3. Digitizing process of capturing spatial data on the computer
 - a. Digitizing tablet
 - b. On-Screen Digitizing "heads up" digitizing
 - c. calibrating the digital feature with real-world geographic coordinates
 - 4. GPS as a tool for capturing spatial data
 - B. Attribute Data Management
 - 1. Using georelational database editor to enter attribute data to map features
 - 2. Database Tables (table = cells in rows and columns)
 - a. Columns = Fields
 - b. Rows = Records
 - 3. Key Fields
 - a. Columns of data that can be used to link multiple tables together
 - C. Data Display
 - 1. Digital Map / Cartographic Display
 - 2. Tabular Data Display

- D. Data Exploration
 - 1. data-centered query and analysis
 - a. query = asking a question of the data
 - 2. Identify general trends, distribution, and relationships between data
- E. Data Analysis
 - 1. mathematical and statistical operations on spatial data
 - a. e.g. measure land slope from an elevation model
 - b. measure areas of bedrock geology polygons
 - 2. Spatial Interpolation
 - a. Using discrete control points to estimate a continuous distributon of data
 - (1) e.g. contouring elevation data to make a topographic map
 - b. Geostatistics
- F. GIS Modeling / Spatial Modeling
 - 1. Using a given data set to model changes in spatial trends through time and space
 - 2. Using existing data to create new data
- IV. GIS and Spatial Database Functions
 - A. Purpose: to use map feature to call and retrieve data about a given area or map object.
 - B. Database Query
 - 1. Asking questions about attributes in a spatial database
 - 2. Geographic searching is critical to GIS database queries
 - C. Examples of spatial database queries that can be accomplished with GIS
 - 1. Find all homes in the city of Portland that have the following attributes: they are located within 50 ft of a fire hydrant, are painted red, are situated within 500 feet of an active fault zone, and have median household incomes of greater than \$50,000.00
 - 2. Find all map areas that are associated with hillslope gradients greater than 25 degrees
 - 3. What is the total land area on the map that is underlain by alluvial deposits of the Willamette River?
- V. GIS Map Types
 - A. Dot Maps or Symbol Maps
 - 1. e.g. locations of state capitols around the U.S.
 - B. Line Maps
 - 1. e.g. road maps
 - 2. stream network maps
 - 3. topographic (contour) map
 - C. Area Maps
 - 1. isohyet map (map showing areas of equal rainfall)
 - 2. land use map (map showing areas of similar land use)
 - D. Volume Maps

- 1. 3-D models of the Earth's surface
- VI. Examples of Advanced Analytical Techniques
 - A. Hydrologic modeling and prediction
 - B. Statistical analysis of spatial data
 - C. Network analysis (choosing paths of lowest cost or most efficient routes)