NS481/581 Introduction to Geographic Information Systems (GIS)

- I. What is GIS?
 - A. GIS A digital (computer-based) information system that builds, manages, distributes, and analyzes spatial data
 - 1. spatial data = any information that is related to 3-D space
 - B. GIS Development
 - 1. geography, cartography, computer science, mathematics
 - 2. Interdisciplinary science and tool
 - C. Characteristics of a GIS
 - 1. software / computer driven
 - 2. a toolbox for anlyzing spatial data
 - 3. involves unique spatial data linked to maps
 - 4. linkage of computer-based maps and database management system
 - 5. GIS uses map features to manage data
 - 6. GIS uses map features to query and retrieve data
- II. Cartographic Components of GIS
 - A. Map Features
 - 1. points (discrete positions in space)
 - 2. lines (linear connnections between points, aka "arcs")
 - 3. polygons (areas enclosed by lines)
 - B. Map Layers (aka "Themes" or "Coverages")
 - 1. layers = classes of cartographic information stacked on top of one another
 - 2. examples of layers or themes or coverages for any given map region
 - a. topography
 - b. bedrock geology
 - c. population density
 - d. roads
 - e. streams
 - f. vegetation
 - g. soils.... etc.
 - C. Map Position Coordinates (based on Cartesian coordinate system)
 - 1. Longitude Latitude (degrees)
 - 2. Eastings Northings (meters or feet)
- III. Digital Data Structures for Map Information
 - A. X-Y-Z data (X,Y = position, Z = "attribute)
 - B. Attributes of map features
 - 1. points, lines, polygons are assigned attributes
 - a. attribute examples
 - (1) elevation

- (2) bedrock type
- (3) vegetation type

C. Digitizing

- 1. Process of obtaining digital map coordinates, map element types, and attributes of elements
- 2. digitizing = method of obtaining map information in computer format

IV. GIS and Spatial Database Functions

- A. Purpose: to use map feature to call and retrieve data about a given area or map object.
- B. Database Query
 - 1. Asking questions about attributes in a spatial database
 - 2. Geographic searching is critical to GIS database queries
- C. Examples of spatial database queries that can be accomplished with GIS
 - 1. Find all homes in the city of Portland that have the following attributes: they are located within 50 ft of a fire hydrant, are painted red, are situated within 500 feet of an active fault zone, and have median household incomes of greater than \$50,000.00
 - 2. Find all map areas that are associated with hillslope gradients greater than 25 degrees
 - 3. What is the total land area on the map that is underlain by alluvial deposits of the Willamette River?

V. GIS Map Types

- A. Dot Maps or Symbol Maps
 - 1. e.g. locations of state capitols around the U.S.
- B. Line Maps
 - 1. e.g. road maps
 - 2. stream network maps
 - 3. topographic (contour) map
- C. Area Maps
 - 1. isohyet map (map showing areas of equal rainfall)
 - 2. land use map (map showing areas of similar land use)
- D. Volume Maps
 - 1. 3-D models of the Earth's surface

VI. Examples of Advanced Analytical Techniques

- A. Hydrologic modeling and prediction
- B. Statistical analysis of spatial data
- C. Network analysis (choosing paths of lowest cost or most efficient routes)

VII. Example GIS Applications

- A. Using GIS to understand the spread of forest disease over time
- B. Using GIS to estimate seismic hazards in western Oregon
- C. Using GIS to map the distribution of endangered species
- D. Using GIS to track the spread of AIDS globally over time