Geological Society of America - Spring 2007 Cordilleran Section Meeting, Bellingham, Washington

 Session: Volcanoes of the Pacific Basin and Rim - Geological and Geophysical Observations (Poster Booth 38)
Cinder Cone Analysis at Newberry Volcano, Oregon: A Synthesis of Results from the Earth Science Program for Undergraduate Research at Western Oregon University

TAYLOR, Stephen ${ }^{1}$; TEMPLETON, Jeffrey ${ }^{1}$; PIROT, Rachel ${ }^{2}$, BUDNICK; Jeffrey ${ }^{1}$; DRURY, Chandra ${ }^{1}$; NOLL, Katherine ${ }^{1}$; FISHER, Jamie ${ }^{1}$; FALETTI, Anthony ${ }^{1}$; GILES, Denise ${ }^{3}$; and HALE, Diane ${ }^{1}$; (1) Earth and Physical Sciences Dept., Western Oregon University, Monmouth, OR 97361, taylors@wou.edu, (2) Dept. of Geology, Portland State University, Portland, OR 97207, (3) Dept. of Geosciences, Oregon State University, Corvallis, OR 97331

ABSTRACT

Newberry Volcano of central Oregon covers greater than 1600 sq. km
and is associated with over 400 basaticic cinder cones and fissure vents

 $10-\mathrm{mDEMs}$ Were compiled with 177 single and 165 composite cones selected
for spatial morphometic, and volume analyses. The large number of cinder for spaial, Morphometric, and volume analyses. The large number of inder
cones providides a robust data set trom which to quantitatively test tor stucuctural controls on magma emplacement. This work represents a synntesis of results
produced over the past four vears by the Earth Science Program tor produced over the past four years by the Earth Science Program for
Undergracauate Research at western Oreaon Univesity. Nevwery cone positions and morthologogic. characterisics were
compied and statisically analyzed using Gis. Cone locations were further Compiled and staisistially analyzed using GIS. Cone locations were further
subdivided into northern (n=181) and southern
$(n=16151)$ domains to test tor
 distribution patterns were tested for randomness and spatial anisotoropy using
Monte Carto simulations. Individual cone DEMs were extractea,

 to tault trends to assess the degree to
guided by regional tectonic stress fiedss.
guided by regional tectoric s.stress fields

 Tumalo faut zones had a detectable control on cinder-cone emplacement in
both the northern and southern domains, whereas the Waker Rim is poorly both the notheren and southern domanis, whereas the Waker Rim is ovory
correlated to significant cone distribution patems. This study provides a tramewart to ovide future geomorphic and geochemical analysis of cinder
cones at Newberry volcano.

INTRODUCTION

Newbery Volcano of central Oregon, is located in a complex,
extensional tectonic seting at the intersection of the Basin and Range, ligh

 Brothers (W-NW trending), Tumalo($(\mathbb{N}$-NW), and Walker Rim (NE) faut zones.
With a volume of greater than 450 km , Newbery is one of the largest volcanoes in the contiguous United States and is associated with over 400
basatic cinder cones and fissure vents (Holocene-Late pleistocene; Jensen

 Macleod and Sherodod (1988) observed that the curvilinear distisibtuion of
cinder cones and fissure vents on the flanks of Newberry trend mostly paralel cinder cones and fissure vents on the tlakk of Newberry trend mostly parallel
to the Wakker Rim and Tumalo faut zones, suggesting that these strucurues othe waker Rim and Tumalo faut zones, suggesting that these structures
may torm a single arc-shaped fracture zone at depth and likely seve as conduits that guide magma emplacement.

Figure 1. Generalized map of Oregon emphasiing the regional geologic and
tectoricic framework of Newberry Volcano. (After Waker and Macleod. 1991).

While the structure-controlled, eruptive mechanism posited by
Macleod and Sherrod (1988) has significant meiti, supporting statisisical analysis of cone patterns and regional faut trends are lacking. To address this need, GIS and spatial analyses were used to quantitatively delineatit
Newbery vent-distribution paterns and test tor strucurual controls on magma Newberry vent- distribuition paterens and test or structura controls on magna geologoic tramework trom which to conductect morphometrice analyses, tes
existing erosional degradation models. and decinher controls on existing erosional degraa
magnitude and trequency.
This paper resesents the third installment of research on the geologic,
 vocrano. one ot the objectives of this ongoing research is to actively engay curriculum atwestern oregon University. The following is a synthesis of work conducted since 2001.
 GEOLOGIC SETTING
Newbery Volcano lies at the west end of the High Lava Plains about
 displays tectonic and compositional characteristics of the cascade Range
High Lava Pliais, and amasin and Range (Macleood and others, 1981 Maccleod and hherorod. 1988). The volcane is also positioned at the younger end of a sequence of thyolite domes and caldera-forming ash-flow tutfs tha decierease in age from $10 \mathrm{~m} . \mathrm{y}$.in southeastern oregon to less than $1 \mathrm{~m} . \mathrm{y}$. nea
the caldera($\mathrm{Fig}, 1)$
Newberry is located in a complex, extensional tectonic seting
dominated by Pliocene to to puaternary fauts (Macleod and others, 1981 dominated by Pliocene to Quaternary fauts (Maccleod and others. 1981 1
Macleod and Sherrod. 1988). Several maior faut zones surround and Macteod and Sherod. 1988). Several. major faut zones surround and
converge near Newberry, including the brothers tautit one, the Tumalo faut zone, and the Walker Rim faut zone (figs. 1 and 2). The Brothers faut zone

Overview of Newberry Volcano -Shield-shaped composite volcano
 - Sunmit Caldera Area $=4 \mathrm{~km}^{2}$ - Elevation: $1300 \mathrm{~m}-2400 \mathrm{~m}$;
Relief -100 m $-1100 \mathrm{~m}$
-Composition: Basalt to Rhyolite
-Estimated Volume $=460 \mathrm{~km}^{3}$ - - 5 timated Volume $=40 \mathrm{~km}^{3}$

$\gg 400$ cinder cones and fissure vents -Quaternary in Age $>$ Normal Polarity $<788,000$ yrs BP
Tepee Draw Tuff $-500,00$ yrs BP -Tepee Draw Tuff $-500,00$ yrs BP

- West Flank Tuff $-100,000$ yrs BP - West Flank Tuff - $100,000 \mathrm{yrs} \mathrm{BP}$
Holocene activity: $10,000-1200$ yrs

Figure 3. Atlas-relief map of
Newberry
Figure 3. Altas-relie
Newberry Volcano.
Figure 2. Generalized geologic map of Newberry Volcano (after Jensen, 2000 -One of largest Quaternary volcanoes
-
is a maior W-NW trending domain of dominantly right-ateral strike slip fauts
hat extend ftom southeastern

 Walker Rim faut zone oftselso older flows (Figs. 1,2 .2).
The flakks of Newberry Volcano are covered mostly by basalic
andesite lava flows (Fig. 2). Cinder cones are most abundant on the nootit
 on the west tlank (Figs. 3,4). Macteod and Sherorod (1988) interpreted cone
alignents as the surace expression of dikes at depth that formed in aignments as the surface expression of dikes at depph that tomem in
response to regional stress fields. They osserved that the apparent
Tol
 south flanks of Nemberry trend mosity panallel to to the Walker Rim and Tumalo

 of Newbery Volcane
showing central calderar erion and
elated cinder-con related cinder-cone
field in oforearound (red
outines) Figur 4B. Aerial view
of southeast cinder cone fied as as viewed
trom Paulina Peak.

Earth Science

CINDER CONE RESEARCH QUESTIONS Are there morphologic groupings of ~ 400 cinder cones at Newberry? Can they be quantitatively documented?
Are morphologic groupings associated with age and state of erosional degradation?
Are there spatial patterns associated with the frequency, occurrence, and volume of cinder cones? Are there spatial alignment patterns? Can they be statistically documented?
Do regional stress fields and fault mechanics control the emplacement of cinder cones at Newberry volcano?

METHODOLOGY

- Digital Geologic Map Compilation / GIS of Newberry

Volcano (after McLeod and others, 1995)
GIS analysis of USGS 10-m DEMs Phase 1 Single Cones/Vents ($n=182$) > Phase 2 Composite Cones/Vents $(\mathrm{n}=16 \mathrm{a})$
Morphomerric analyses
$>$ Cone Relief, Slope, Height/Width Ratio Cone Relief, Slope, Height/Width Ratio

- Volumetric Analyses

Cone Volume Modeling Volume Distribution Analysis

- Cone Alignment Analysis

Two-point Line Azimuth Distribution
Comparative Monte Carlo Modeling (Random vs. Actual)
 of MacLeod et al. (1995) and rendered in 3 D from USGS 10-m DEMs.

Figure 6. 10-m DEM relief maps for three select cinder cones at Newberry Volcano. (map unit "Oc" of MacLeod and others, 1995). Shaded relief maps
were used to visually rank each cone in the data set according to qualitative were used to visually rank each cone in the data set according to qualitative
appearance of shape, slope configuration, and vent morphologies (Table 1).

Figure 9 . Shaded-relief maps illustrating the kriging-based method by which
cone volumes were calculated from $10-\mathrm{m}$ DEMs.

Figure 10. Contour map of select cinder cone volumes at Newberry Volcano.
Volume maxima both north and south of the summit caldera are broadly colinear with the N -NW trending Tumalo fault zone.

CONE ALIGNMENT ANALYSES:

 SINGLE AND COMPOSITE CONESObserved Newberry cone alignments patterns were tested for randomness and spatial anisotropy using the "two-point" method of Lutz
(1986) and the "point-density" method of Zhang and Lutz (1989). Both techniques consider cinder cone positions to represent (1989). Both connecting a set of lattice lines. connecting a set of lattice lines. Newberry cone positions and lattice
orientations were systematically compared to simulated random poin patterns (Fig. 11). Statistical filtering was used to identify anisotropic distributions and delineate cone-alignment patterns. Statistically significan assess the degree to which magma emplacement was guided by regiona tectonic stress fields (Fig. 12)

ure 11. Diagrammatic summary of statistical procedures used to identif
cinder cone alignment patterns at Newberry Volcano (after Lutz, 1986; an
cinder cone alignment
Zhang and Lutz, 1989).

Figure 12. Location map and frequency histograms showing distribution of ault segment orientations for the Tumalo (TFF), Walker Rim (WRFZ), an
Brothers faut zones (BFZ). Modal fault azimuth orientations are 330-304, 45-

CONE TWO.POINT ALIGNMENT
ANALYSIS (after Lutz, 1986) vULL APPOTHEESIS
Distribution of Actual
Distribution of Actual Cone Alignments
Random Cone Alignments
EXPECTED ALLIGMENT FREQUENCY:

$n=$ No. of Cinder Cones
$k=$ No. of Azimuthal Bins
Normalized Allgnment frequencr:
$\mathrm{Hoorn}=\left(F_{\text {Exp }} / F_{\text {Ava }}\right) * F_{\text {oss }}$

 ${ }_{\mathrm{E} \text { Exp }}=$ expected din frequency

 analysis method (Lutz, 1986) as applied to all Newberry cinder cones. A.
Raw frequency distribution for line-azimuths drawn between cinder con
 $96 /$ replicate). The strong north mode reflects the elongated $N-S$ shape o
Newberry. C. Normalized cone data, transformed to remove the shape ewewbery. A. Normaizec cone data, transtormed to remove the shape
effects. Azimuth bins with frequencies greater than the critical value are
significant at the e5\% contidence interval. significant at the 95% confidence interva

igure 14. Results of the two-point analysis method (Lutz, 1986) as applied via dividing Newberry con
liscussion of techniques.

POINT-DENSITY METHO (ZTang and Lutz, 1989)

-1-km wide filter strips with 50% overlap
-Filter strip-sets rot
Tally total number of cones $/$ strip $/$ azimuth bin

- Calculate cone density per unit area
es to random (replicates $=50$)
Normalize Cone Densities: $D=(d-M) / s$

-Significant cone lineaments $=>2 \cdot 3$ STDEV above random

Figure 15. Summary map showing regional fault trends and results of the of cone-alignment trends directly parallel to the Walker Rim Fault Zone. The Monte Carlo-based analyses identify three significant cone alignments in the rections $=0,10-35,340-350)$, and strengthens the statistical significance of the 310 and $340-350$ cone alignment directions.

SUMMARY AND CONCLUSION

newberry cone morphology
Degradation Morphology Through Time (after Dohrenwend and others, 1986) egraifution Morphologst wasting
Reduction of cone height and slope
$>$ Reduction of cone heigh
Newberry Results definition
Group I Cones: Avg. Slope $=19-200^{\circ}$ Avg. Relief $=125 \mathrm{~m} ;$ Avg. $\mathrm{H}_{\mathrm{c}} \mathrm{W}_{\mathrm{c}}=0.19$ Group II Cones: Avg. Slope $=11-15^{\circ}$; Avg. Relief $=65 \mathrm{~m}$; Avg. $\mathrm{H}_{e} / \mathrm{W}_{c}=0.14$ Soup I = "Youthtul"; more abundant in northern domain
Group II = "Mature"; common in northern and southern domains ossible controlling factors include: degradation processes, age differences, climate, post-eruption cone burial, lava composition, and
episodic (polygeneic) erupion cycle
newberry cone volume results

- Newberry cone-volume maxima align NW-SE with the Tumalo fault zone
implies structure has an important control on eruptive process
newberry Cone alignment patterns
- Newberry cones align with Brothers and Tumalo fault zones

Poor alignment correlation with Walker Rim fault zone
Other significant cone alignment azimuths: $10-35^{\circ}, 80^{\circ}$, and $280-295^{\circ}$ Results suggest additional control by unmapped structural condition Cone-alignnent and volume-distribution studies suggest that the
Tumalo Fault zone is a dominant structural control

concluding statements

This study provides a preliminary framework to g
gecchemical analyses of Newberry cinder cones
This study frames additional questions regarding the complex interactio between stress regime, volcanism, and faulting in central Oregon This project provided an excellent opportunity to engage undergraduat
Earth Science students in problem-aased reseach

REFERENCES

\qquad

