
ARTICLE IN PRESS
0098-3004/$ - se

doi:10.1016/j.ca

$Code availa

CGEditor/index
�Correspond

TX 77401-4814

E-mail addr
Computers & Geosciences 32 (2006) 166–175

www.elsevier.com/locate/cageo
MATLAB functions to analyze directional (azimuthal)
data—I: Single-sample inference$

Thomas A. Jones�

Department of Earth Sciences, Rice University, Houston, TX 77251-1892 USA

Received 11 September 2004; received in revised form 12 June 2005; accepted 13 June 2005
Abstract

Data that represent azimuthal directions cannot be analyzed statistically in the same manner as ordinary variables

that measure, for example, size or quality. Many statistical techniques have been developed for dealing with directional

data, but available software for the unique calculations is scarce. This paper describes a MATLAB script, located on the

IAMG server, that calculates descriptive statistics and performs inference on azimuthal parameters. The calculations

include tests for specific distributions, and tests on the preferred direction and concentration of vectors about this

direction. The inference methods use large-sample approximations, plus resampling methods (bootstrap) for smaller

sample sizes.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Data that describe directions are important in the

earth sciences. The azimuthal direction of a fluvial

current that forms cross-beds is an obvious example.

However, observations from such directional variables

cannot be analyzed with standard statistical methods. I

use the geological definition of azimuths which are

cyclical in nature, with 01 and 3601 representing the

same direction, due North. Azimuths increase clockwise,

with 901 representing East. The cyclicity implies that if

we observe directions of 21 and 3581, a simple mean

would indicate a direction of 1801, or due South,

whereas we know that the correct average or dominant
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direction is actually North. Special methods of analysis

clearly are needed for such variables.

During the 1960s, statisticians and earth scientists

started looking extensively at ways to statistically

analyze azimuthal or other cyclical data. Statisticians

have taken large steps in how to work with such

variables in the past 30 years. Excellent references on

cyclical variables, history of their analysis, and modern

statistical methods include Mardia (1972), Fisher (1993),

and Mardia and Jupp (2000). Applying some of these

new techniques is difficult, requiring special code.

Available software is scarce, but includes MATLAB

scripts (Middleton, 2000), SAS macros (Blaesild and

Granfeldt, 2003), code for displays (Wells, 1999), and

the DDSTAP package developed by Ashis SenGupta

(Indian Statistical Institute, Calcutta). I am not aware of

general, inclusive computer programs that are designed

for analyzing directional data.

MATLABs (a registered trademark of The Math-

works, Inc.) is a general program for doing mathematical
d.
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Table 1

Listing of typical data array used by Vector_Stats

294 1

177 2

257 3

301 4

257 5

267 6

329 7

177 8

241 9

315 10

229 11

239 12

277 13

250 14

287 15

281 16

166 17

229 18

254 19

232 20

290 21

245 22

245 23

T.A. Jones / Computers & Geosciences 32 (2006) 166–175 167
computation, primarily designed to work with vectors

and matrices. It is widely used in the engineering and

physical sciences because of its rich set of capabilities.

Many good references are available, including Hansel-

man and Littlefield (2001) and Hunt et al. (2001).

Although it has some statistical capability, it is not a

statistical-analysis tool. However, functions in MA-

TLAB can be combined to execute complex statistical

analyses.

MATLAB contains a strong capability for users to

develop scripts and functions that make use of the basic

MATLAB tools. The ability also exists to create graphic

user interfaces (GUIs) for operation of the scripts. This

paper describes a script that is designed for analysis of a

sample of directional (azimuthal) data. This script,

named Vector_Stats; calculates descriptive statistics,

generates plots, and performs single-sample inference on

distributions and parameters. A second paper describes

another script (Jones, in press) that is designed for

correlation analysis.

Vector_Stats; is designed strictly for two-dimen-

sional directional data (that is, azimuths on maps), such

as directions of cross-beds. Further, it is limited to

vectors (e.g., direction of dip) that indicate a single

direction. It is not appropriate for axial data (two-

directional lines such as strike) that cannot distinguish

between two directions 1801 apart. See Section 4.2 for

recommendations on dealing with axial data. This script

is not for three-component directions, such as orienta-

tions of poles to bedding.

Although directions are the most common form of

cyclical data in the earth sciences, other variables are

also cyclical in nature and must be analyzed similarly to

azimuths. For instance, the time of day that tornados

occur is cyclical over 24 h, with 00:01 and 23:59

representing essentially the same time. Again, standard

statistical techniques are not adequate for this type of

data. Converting such variables to pseudo-angles

(azimuths) allows analysis.

This paper describes methods that have been coded

into the script. These are taken from the literature,

primarily Fisher (1993) and Mardia and Jupp (2000).

These books extensively reference prior work. Accord-

ingly, readers are referred to the books for added

information and original references. This paper’s con-

tribution is in selection and coding of the statistical

methods for MATLAB.
214 24

272 25

224 26

215 27

242 28

186 29

224 30

Column 1 contains azimuths and column 2 is an identifier

(Fisher, 1993, appendix B.6).
2. Overview of orientation data

Assume we have measured a set of N cross-bed

orientations, yi, each representing the direction observed

at a location. The observations are in the form of

azimuths, with 01 representing North, 901 East, and so

on. Hence, the values of the yi are in the range (01, 3601),
or equivalently in the range of (0, 2p) radians. We may

think of each observation as a unit vector that points in

the direction of interest.

Table 1 shows a listing of a typical data array used by

the script. Each row in the array represents an

observation. The columns represent different variables,

some of which may be azimuthal and others linear. Here

we are interested in column 1, which represents cross-

bed orientations from the Bulgoo Formation, Australia.

These data are provided on the IAMG server in file

TestData:txt; and are discussed in Section 4.1.

Useful plots for showing the distribution of the

observed data may be generated. Fig. 1A shows a rose

diagram of the data in Table 1. Note that this plot is in

terms of azimuths (i.e., North is 0 and angles increase in

a clockwise direction). The MATLAB function rose
generates a similar plot that is in terms of angles that

follow the standard mathematical definition (that is,

angles increase in a counter-clockwise direction). Wells

(1999) points out the sensitivity of rose diagrams,

similarly to histograms, to the origin and widths of the

classes. He provides alternative methods, as well as

QuickBasic code, for generating plots.
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Fig. 1. Plots showing distribution of azimuths (Table 1) from

the Bulgoo Formation, Australia (Fisher, 1993, appendix B.6);

large arrowhead on outside of each circle shows direction of

vector mean. (A) Rose diagram and (B) Compass plot.

Fig. 2. Individual observed vectors (solid lines a, b, c) are

moved parallel to themselves (a0, b0, c0) and combined via vector

summation to form vector mean (dashed vector).
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Fig. 1B shows a compass plot that indicates the

individual vectors, again plotted as azimuths. This is

similar to the MATLAB function compass; which

plots according to the mathematical orientation. Fisher

(1993, chapter 2) shows several other ways to display

observed azimuthal data.

2.1. Estimation of preferred direction

With ordinary linear data, we commonly calculate the

sample mean to indicate the central portion of the
observed data. Similarly with vector data, we wish to

know the preferred orientation ȳ of the sample (i.e., a

measure that is analogous to the center of the observa-

tions but that takes cyclicity into account). An intuitive

estimate of the vector mean (direction of preferred

orientation) is given by the vector sum. That is, we add

together the N unit vectors to form a combined vector,

as in Fig. 2.

We can find the X and Y components of each vector

by trigonometry, and combine the components to obtain

the direction of the resultant vector. Define

C ¼
XN

i¼1

cos yi; C ¼ C=N,

S ¼
XN

i¼1

sin yi; S ¼ S=N.
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The preferred vector direction ȳ is given in degrees by

(cf. Fisher, 1993, p. 31)

ȳ ¼

tan�1ðS=CÞ; S40;C40;

tan�1ðS=CÞ þ 180; Co0;

tan�1ðS=CÞ þ 360; So0;C40:

8><
>: (1)

The length, R, of the combined vector may be calculated

as

R ¼ S2 þ C2
� �1=2

. (2)

If all N of the vectors are essentially oriented in the same

direction, then R will be nearly equal to N. On the other

hand, if the N vectors point in all directions around the

compass, then the resultant vector will be short and R

near 0. Hence, a large value of R is analogous to a small

variance in a linear variable. The mean resultant length

is R ¼ R=N:
2.2. Von Mises and uniform distributions

Estimation of the vector mean and its length is of

value, but we are interested in inference that allows us to

make statements using probabilities. To make the

statistical analysis rigorous, we assume distributional

forms. Several distributions are appropriate, but the von

Mises (also called the circular-normal) distribution is

most commonly used (cf. Fisher, 1993, pp. 48–56;

Mardia and Jupp, 2000, pp. 36–45). The density

function for the von Mises distribution is given by

f ðyÞ ¼
1

2pI0ðkÞ
ek cosðy�mÞ;

0 � yo2p;

0 � mo2p;

k � 0;

where m represents the preferred vector orientation of

the population, and k is the concentration parameter

that indicates how closely the vectors y cluster around m.
I0(k) denotes the modified Bessel function of the first

kind and order 0 (cf. Fisher, 1993, pp. 50–53; Mardia

and Jupp, 2000, p. 36; Bowman, 1958, chapter 3).

The von Mises distribution is unimodal when it is

wrapped around a circle; it may appear bimodal on a

linear scale if the mode is near 01 or 3601. The preferred

direction m is the direction of this mode. The mode

becomes broader as the concentration parameter k
decreases, and the mode disappears at k ¼ 0.

The uniform distribution over the circle is defined by

f ðyÞ ¼
1

2p
; 0pyo2p.

This distribution has constant probability over the

circle, so no mode exists and m is undefined. The

circular-uniform distribution corresponds to the von

Mises distribution with k ¼ 0.
3. Script Vector_Stats

Script Vector_Stats operates in MATLAB version 6

on PC or UNIX machines. It requires access to the

standard MATLAB functions, as well as the Toolbox.

Operation is rapid; all simple calculations for a data set

with N ¼ 100 can be executed in less than 30 s on a

relatively slow machine. Resampling calculations (used

for small N) can take one or more minutes each.

Operation of Vector_Stats is similar to any MA-

TLAB script. Begin by setting the directory path to the

location of Vector_Stats and its component scripts and

functions. In addition, make sure that the MATLAB

functions and Toolbox are accessible. Then, in the

MATLAB command window, perform any preliminary

operations or calculations that are needed (e.g., load

data, transform variables). Execute the script by entering

Vector_Stats on the command line and pressing Enter.

Script Vector_Stats then performs some or all of the

following steps:
1.
 Interactively requests information (data set name,

dimensions, column containing data to analyze) on

the data set to be processed. This can be either a text

file or a MATLAB array currently in memory.
2.
 Interactively requests information on which calcula-

tions are to be made.
3.
 Calculates descriptive statistics and generates plots.
4.
 Tests data set for coming from uniform distribution

or von Mises distribution.
5.
 Performs inference on vector mean, m.

6.
 Performs inference on concentration parameter, k.

7.
 Separates a mixture of two von Mises distributions

into its components.
8.
 Writes calculations to external text file.

3.1. Input data

The data used for analysis may be in either of two

forms: a data array already in the MATLAB memory

(e.g., Table 1) or a text file (e.g., Table 2). This file begins

with header records (here, three); the user instructs the

script to skip these records. The data consist of the array

made up of nine rows (observations) and seven columns

(variables). With the exception of the header records, no

character or string variables may be in the file. If such

variables are in the data set, read the file separately into

MATLAB and pick up the resulting array for analysis.

The script may also process a data array that already

is in MATLAB’s memory. If so, the user may simply

specify the name of that array, and indicate which

column is to be used for analysis. If the Vector_Stats
script is used to read a text file, the data array that is

input will be left in MATLAB memory, under the name

AzData; after execution.
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Table 2

Listing of file BimodeData:txt that contains frequency-count data for cross-bed orientations of the Salem Limestone (Sedimentation

Seminar, 1966)

X-beds in Salem Ls—two-component mixture

(Sedimentation Seminar, 1966)

MidpAzim NRegn NLocal NSteGen NHarrods Mode1 Mode2

20 51 16 9 16 51 0

60 70 59 0 1 70 0

100 43 12 3 6 43 0

140 33 7 7 9 16 17

180 47 12 4 9 0 47

220 85 38 23 10 0 85

260 85 22 2 2 0 85

300 46 20 5 4 0 46

340 28 19 4 5 14 14

Column 1 contains azimuth class midpoint and column 2 holds counts for regional observations.
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The script may read individual data values, as in the

array of Table 1. However, it may also read grouped

data. In such cases, the azimuth values represent the

midpoints of azimuth classes in one column, and a

second column in the data set contains the class

frequencies that are associated with the azimuth class

midpoints. See the description of file BimodeData:txt in
Section 4.1. The file is read as described above, but now

two columns must be specified rather than only one.

3.2. Descriptive statistics and estimation

The script will generate descriptive statistics auto-

matically. These include the observed vector mean, ȳ ¼
m̂; which estimates the population preferred direction m.
The maximum-likelihood estimator of m for the von

Mises distribution is the same as the general estimate

given in Eq. (1). Of course, the preferred direction is not

defined for a uniform distribution.

The maximum-likelihood estimator k̂ML of k is given

by the solution of

A1 k̂MLð Þ ¼ R, (3)

where A1 k̂MLð Þ ¼ I1 k̂MLð Þ=I0 k̂MLð Þ; I1 and I0 are Bessel

functions, and R ¼ R=N is the mean vector-resultant

length. The function is tabled by Fisher (1993, appendix

A.3, A.4) and Mardia and Jupp (2000, appendix 2.3,

2.4); the script uses their tables for estimating k. The
function A1 and solution of Eq. (3) are discussed by

Fisher (1993, pp. 50–52, 88) and Mardia and Jupp (2000,

pp. 40–41).

The estimator k̂ML of Eq. (3) may be biased for small

R and N. Accordingly, Fisher (1993, p. 88) provides a

correction for use with Np15

k̂ ¼
max k̂ML � 2= Nk̂MLð Þ; 0

� �
; k̂MLo2;

N � 1ð Þ
3k̂ML= N3 þN

� �
; k̂MLX2:

(
(4)
The script generates data plots (Fig. 1), as well as two

Q–Q plots. A Q–Q plot compares the distributional

form of the sample observations to a theoretical

distribution. If the two distributions are similar, the

points should fall along a straight, 451 line. Two Q–Q

plots compare the observations to the circular-uniform

and circular-normal distributions. These Q–Q plots,

similar to those for linear data, are described by Fisher

(1993, pp. 65–66, 82–83).

3.3. Testing form of population

We assume the distributional form of a population in

order to use probability statements for inference, so it is

necessary to determine if a sample of measurements is

consistent with the assumptions. For instance, the

circular-uniform distribution would imply no preferred

orientation and hence no defined vector mean. On the

other hand, the circular-normal distribution is widely

used for inference, so it is useful to determine if the

sample could have come from that distribution. This

section describes three tests of the uniform distribution,

and one test of circular normality.

Mardia and Jupp (2000, pp. 94–98) describe the

Rayleigh test, a simple and useful way to test for

uniformity. The null hypothesis is that the sample was

derived from a circular-uniform distribution, versus the

alternative that the distribution is not uniform. More

strongly, however, ‘‘y the Rayleigh test is the most

powerful invariant test against von Mises alternatives

(p. 96).’’

First we consider the case in which the vector mean, m,
is not known. For large samples, 2NR

2
is distributed as

chi-square with two degrees of freedom. Mardia and

Jupp (2000, p. 95) report that the modified Rayleigh

statistic

ð2N � 1ÞR
2
þNR

4
=2
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also is distributed as chi-square with two degrees of

freedom ‘‘y for all but the smallest sample sizes.’’ The

script uses this version of the Rayleigh test and the chi-

square distribution for any selected significance level.

If the mean direction, m, is known or hypothesized,

then we are testing uniformity against an alternative

having a specified mean direction. It is reasonable to

consider the statistic

C
�
¼
X

cos yi � mð Þ=N.

Mardia and Jupp (2000, pp. 98–99) report that 2NC
n2

is

distributed as chi-square with one degree of freedom for

large N. For smaller N, they provide a table (their

appendix 2.6, after Stephens, 1969) of rejection points

for C
�
; only values of significance level a ¼ 0:10, 0.05,

0.025, and 0.01 are tabled. The script uses the table for

Np50; the chi-square distribution is used for N450,

without restriction on significance level a. Fisher (1993,
p. 69) provides an alternative form of this test. The R̄

and C̄
�
tests may also be used for discrete data (Fisher,

1993, p. 71).

The third test for uniformity in Vector_Stats is the

U-test (Mardia and Jupp, 2000, p. 104); it is based on

comparison of the theoretical CDF of a uniform

distribution to that of the data. This test is powerful

against all alternatives, not just unimodal distributions.

Sort the observed azimuths from smallest to largest

over the range (0, 360), giving the order statistic

yð1Þ; yð2Þ; . . . ; yðNÞ, where the parentheses in the subscripts

represent sorted order. The theoretical uniform CDF is

given by Ui ¼ yðiÞ=2p; i ¼ 1; . . . ;N. Then calculate

U2 ¼
XN

i¼1

Ui �U �
i � 1=2

N
þ
1

2

� �2
þ

1

12N
, (5)

where U is the simple mean of the Ui. The modified

statistic

U�2 ¼ U2 � 0:1=N þ 0:1=N2
� �

1þ 0:8=N
� �

(6)

varies little for N47, and a table is given by Mardia and

Jupp (2000, table 6.5). Only values of significance level

a ¼ 0:10, 0.05, 0.025, and 0.01 are tabled.

Choulakian et al. (1994) provide a variant of the U-

test for testing uniformity when the data are in classes

(i.e., discrete distribution). The script calculates U2
G ; and

tables (Choulakian et al., 1994, table 1) are used to reject

the uniformity hypothesis if U2
G is large. Only values of

significance level a ¼ 0:10, 0.05, 0.025, and 0.01 are

used.

For circular normality, Fisher (1993, pp. 84–85)

describes variants of the U-test for testing the hypothesis

Ho: Data are from the von Mises distribution. This test

is similar to the U-test for uniformity, except now we

must take into account that m and/or k may be known

(or hypothesized). Consider first the case where both

parameters are known. This completely defines the von
Mises distribution, so its CDF may be calculated. The

U*2-statistic is calculated by Eqs. (5) and (6); note that

Fisher (1993, eq. (4.35)) contains a typographical error;

see Watson (1961, eq. (26)). Reject hypothesis Ho for

large U*2. Fisher (1993, appendix A.8, case 0) tables U*2,

usable for all N and k.
If both parameters are unknown, the CDF values Ui

are calculated with the von Mises distribution, but now

using the estimates m̂ and k̂: Then U2 (not U*2) is

calculated and tested using tabled values (cf. Fisher,

1993, appendix A.8, case 3).

Fisher (1993, pp. 84–85) discusses the other combina-

tions of the parameters being known and unknown.

Only values of significance level a ¼ 0:10, 0.05, 0.025,
and 0.01 are used by the script, but additional values are

tabled in Fisher’s appendix A.8. The various U-tests can

be affected by ties in the ordered data.

Fisher (1993) and Mardia and Jupp (2000) discuss

other tests of uniformity and circular normality. The

methods described here and written in the script were

selected because they are powerful, convenient, and

general.
3.4. Inference on vector mean

Analogous to ordinary linear statistics, the value of

the vector mean m is of special interest. Inference here

consists of tests of hypothesis of the actual preferred

direction, for the concentration parameter k known and

unknown, and confidence intervals on m.
First consider the test of hypothesis H0: m ¼ mo versus

the alternative Ha: mamo, and assume that the

concentration parameter k is known. Mardia and Jupp

(2000, pp. 119–120) summarize the test. Calculate

C
�
¼
X

cos yi � mo
� �

=N,

S
�
¼
X

sin yi � mo
� �

=N,

R
�
¼ C

�2
þ S

�2
� �1=2

=N.

Three test statistics are provided, depending on the value

of k and N. All are distributed as chi-square with one

degree of freedom; the hypothesis is rejected for large

values of the test statistic.

For large N (the script uses N450), w ¼

2Nk R
n
� C

n
� �

is the test statistic. For ‘‘moderate

sample sizes’’ (undefined; the script uses Np50, but

applies no lower limit), two equations exist, depending

on k. If k42, then

w� ¼ 1�
1

4NkA1ðkÞ

� �
w,
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where A1ðkÞ ¼ I1ðkÞ=I0ðkÞ: If kp2, then w ¼

2Ng R
n
� C

n
� �

; where

g ¼
1

k
þ

3

8k2

� ��1
.

Reject H0 if w (or w*) exceeds the tabled chi-square

value with one degree of freedom and specified

significance level.

Now consider the test of hypothesis H0: m ¼ mo versus
the alternative Ha: mamo, assuming that the concentra-

tion parameter k is not known. Mardia and Jupp (2000,

p. 122) summarize the test, following Upton’s refine-

ments (Upton, 1973). Two test statistics are provided,

both of which are appropriate for NX5 but depend on

the value of C
n
: Both statistics w are distributed as chi-

square with one degree of freedom; reject the hypothesis

if w is large. If C
np2=3; then

w ¼ 4N R
�2
� C

�2
� �.

2� C
�2

� �
.

On the other hand, if C
n
4 2

3
; use

w ¼
2N3

N2 þ C2 þ 3N
log

1� C
�2

1� R
�2
.

We turn now to confidence intervals about the mean

preferred direction, m. Assuming the concentration

parameter k to be unknown (Mardia and Jupp, 2000,

p. 124), we can construct confidence intervals in the

form ȳ� cos�1 ðgÞ; where ȳ is the vector mean calculated

from the data. Returning to the definition of R (Eq. (2))

and R ¼ R=N; we have two choices for calculating g,
depending on R: If Rp 2

3
; then

g ¼
2N 2R2 �Nw21;a
� �

R2 4N � w21;a
� �

2
4

3
5
1=2

,

where w21;a represents the (1�a)th percentile of the chi-

square distribution with one degree of freedom. If R4 2
3
;

then

g ¼
N2 � ðN2 � R2Þ expðw21;a=NÞ
h i1=2

R
.

Combining y and cos�1(g), and taking the modulus 2p
into account, gives the confidence interval L1 and L2,

where C L1pmpL2½ � ¼ 1� a:
Recall that L1 and L2 each represent azimuth

directions. The confidence interval thus represents

an arc centered on y: The width of the arc is

L2 � L1 ðmod2pÞ.
For small N, some of the tests are approximate; the

script calculates confidence intervals on m using resam-

pling (e.g., bootstrap) methods (Fisher, 1993, p. 75, 88,

chapter 8). Test by determining if the hypothesized value

falls within the confidence interval. Fisher (1993) and
Mardia and Jupp (2000) provide other methods of

inference.

3.5. Inference on concentration parameter

We are also interested in the value of the second

parameter of the von Mises distribution: concentration k
of observations around the vector mean m. Consider the
test of hypothesis H0: k ¼ ko versus the alternative Ha:

kako, and assume that m is unknown. A formal test is

not described here, but instead confidence intervals

about k are defined. As usual, reject H0 if the calculated

interval does not include ko. Mardia and Jupp (2000,

pp. 80–82, 126–127) summarize confidence intervals for

various values of R; the mean length of the observed

resultant vector.

Case 1: 0oko1, which is equivalent to Ro0:45: The
interval is based on a transformed variable, g1 2R

� �
¼

sin�1 1:2247R
� �

: Mardia and Jupp (2000, p. 81, eqs.

(4.8.41) and (4.8.42)) state that g1 2R
� �

follows the

normal distribution, with mean approximately equal to

g1ðkÞ and variance var(g1) ¼ 3/[4N(1�4/N)]. They re-

port that this approximation is satisfactory for NX8.

The confidence interval is calculated by first obtaining

an interval based on g1ðkÞ

LR;1 ¼ sin�1 1:2247R
� �

� Za=2 varðg1Þ
	 
1=2

,

LR;2 ¼ sin�1 1:2247R
� �

� Za=2 varðg1Þ
	 
1=2

,

where Za/2 represents the a/2 percentage point of the

standard normal distribution. Then inverting function g1
gives L�R;1 ¼ sin LR;1

� �
=1:2247 and L�R;2 ¼ sin Lr;2

� �
=

1:2247: Using A1ðk̂Þ ¼ R (Eq. (3)) gives the 1�a
confidence limits on k:

L1 ¼ A�11 L�R;1

� �
; L2 ¼ A�11 L�R;2

� �
.

For k near 1 (i.e., R near 0.45), Mardia and Jupp (2000)

recommend using Case 2. Accordingly, the script

calculates both Cases 1 and 2 if 0:40oRo0:45:
Case 2: 1okp2, which is equivalent to

0:45oRo0:70: This interval is also based on a

transformed variable,

g2 R
� �
¼ sinh�1

R� c1

c2

� �
.

Mardia and Jupp (2000, p. 82, eqs. (4.8.46) and (4.8.47)

state that the transformed variable is approximately

normal, with mean approximately g2(k) and variance

varðg2Þ ¼ c23=½Nð1� 3=NÞ�; where c1 ¼ 1.089, c2 ¼

0.258, and c3 ¼ 0.893. They report that this approxima-

tion is satisfactory for NX8. Following a process similar

to that in Case 1, we first obtain an interval based

on g2(k):

LR;1 ¼ sinh�1 R� c1
� �

=c2
	 


� Za=2 varðg2Þ
	 
1=2

,
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LR;2 ¼ sinh�1 R� c1
� �

=c2
	 


þ Za=2 varðg2Þ
	 
1=2

,

where Z represents the standard-normal percentage

point. Then inverting function g2 gives L�R;1 ¼

c2 sinhðLR;1Þ þ c1 and L�R;2 ¼ c2 sinhðLR;2Þ þ c1: Using

A1ðk̂Þ ¼ R (Eq. (3)) gives the 1�a confidence limits on k:

L1 ¼ A�11 L�R;1

� �
; L2 ¼ A�11 L�R;2

� �
.

Case 3: k42, which is equivalent to R40:70: Mardia

and Jupp (2000, pp. 126–127, eq. (7.2.38)) give an

approximate confidence interval for k:

L1 ¼
1þ ð1þ 3aÞ1=2

4a
; L2 ¼

1þ ð1þ 3bÞ1=2

4b
,

where a ¼ ðN � RÞ=w2N�1;1�a=2 and b ¼ ðN � RÞ=w2N�1;a=2;
w2N�1;1�a=2 and w2N�1;a=2 represent the percentage points for
the tails of a chi-square distribution with N�1 degrees of

freedom. Use of the chi-square distribution here is based

on a large-sample approximation; Mardia and Jupp (2000)

do not offer a recommendation for its range of validity.

For small N, bootstrap resampling (Fisher, 1993,

pp. 90–91, chapter 8) is used to generate a confidence

interval.

3.6. Separating two components of mixture

The foregoing procedures are not generally applicable

if the sample is bimodal or multimodal. For example,

the vector mean calculated from a strongly bimodal

distribution may point in a direction of low sample

frequency. Further, if cross-bedding orientation is

being studied, the two modes imply two regimes of

transport conditions, and it is not reasonable to

assume that a single direction can represent both

adequately. We would be dealing with a mixture of

distributions and should estimate the parameters of each

separately.

Let us assume that we are dealing with a mixture of

two von Mises distributions, which can be represented

by the density function

f ðyÞ ¼ p
1

2pI0ðk1Þ
ek1 cosðy�m1Þ

þ ð1� pÞ
1

2pI0ðk2Þ
ek2 cosðy�m2Þ,

where m1 and k1 represent the vector mean and

concentration of the first component, similarly for m2
and k2 of the second component, and p represents the

proportion (fraction) of component 1 in the entire

distribution.

Jones and James (1969) proposed using maximum-

likelihood methods with numerical optimization to

estimate the five parameters. However, convergence to

correct estimates was found to be very sensitive to initial

values of the parameters, which are difficult to obtain,
and other methods subsequently have been developed.

The one described here appears to work consistently.

Fisher (1993, p. 96) describes a method-of-moments

estimation procedure that was proposed by Spurr and

Koutbeiy (1991). This uses six estimating equations for

the five parameters, but seems to work better than

methods using five equations; these six equations are

pA1ðk1Þ cosðm1Þ þ ð1� pÞA1ðk2Þ cosðm2Þ ¼ C1,

pA2ðk1Þ cosð2m1Þ þ ð1� pÞA2ðk2Þ cosð2m2Þ ¼ C2,

pA3ðk1Þ cosð3m1Þ þ ð1� pÞA3ðk2Þ cosð3m2Þ ¼ C3,

pA1ðk1Þ sinðm1Þ þ ð1� pÞA1ðk2Þ sinðm2Þ ¼ S1,

pA2ðk1Þ sinð2m1Þ þ ð1� pÞA2ðk2Þ sinð2m2Þ ¼ S2,

pA3ðk1Þ sinð3m1Þ þ ð1� pÞA3ðk2Þ sinð3m2Þ ¼ S3,

where

ArðkÞ ¼ IrðkÞ=I0ðkÞ, (7)

Cr ¼
X

cosðryiÞ=N,

Sr ¼
X

sinðryiÞ=N

for r ¼ 1, 2, 3. Then let ~m1; ~k1; ~m2; ~k2; and ~p be any set

of estimates of the parameters, and consider DC1, DC2;
DC3, DS1, DS2, DS3, to be deviations of the estimated

model from the observed statistics; for example, the first

of the six equations gives

DC1 ¼ ~pA1ð ~k1Þ cosð ~m1Þ þ ð1� ~pÞA1ð ~k2Þ cosð ~m2Þ � C1

and similarly for the other five. Then the sum-of-squares

criterion is defined as

L2ð ~m1; ~m2; ~k1; ~k2; ~pÞ

¼ DC2
1 þ DC2

2 þ DC2
3 þ DS2

1 þ DS2
2 þ DS2

3.

MATLAB function lsqnonlin (in the Optimization

Toolbox) is used by the script to minimize L2 and

estimate the five parameters. The function requires the

user to specify a tolerance for convergence on the five

parameters.

This method may be extended to more than two

components. However, the computational requirements

grow substantially. It should be noted that obtaining good

estimates of two components can be difficult, and the

complexity grows for more modes if no obvious initial

estimates exist. In general, separating components of a

distribution is difficult with azimuthal data unless the

modes are very clearly defined and the sample size is large.

Fisher (1993, pp. 99–100) and Mardia and Jupp (2000,

p. 91) discuss special cases that may help establish initial

estimates. A common occurrence is that directions of

the two modes differ from each other by 1801. If we

assume that these two mean directions are m and m+180

and concentrations are k1 ¼ k2 ¼ k, then a simple

calculation allows us to estimate the resulting three
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Fig. 3. Rose diagram showing bimodally distributed cross-beds

in the Salem Limestone (Sedimentation Seminar, 1966).
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parameters. Fisher proposes calculating

ci ¼ yi ½mod 180��; i ¼ 1; 2; . . . ;N,

Cc ¼
X

cosð2ciÞ; Sc ¼
X

sinð2ciÞ,

Rc ¼ C2
c þ S2

c

� �1=2
=N.

Estimate mc from Eq. (1) using Cc and Sc. Then the

three parameters can be found

m̂ ¼ m̂c=2,

k̂� ¼ A�12 Rc
� �

,

ð2p̂� 1ÞA1 k̂�ð Þ ¼ C1 cos m̂ð Þ þ S1 sin m̂ð Þ,

where the terms are defined in Eq. (7). Eq. (4) is used to

convert k̂� to k̂: The script automatically calculates these

values.

Fig. 3 shows a rose diagram of the data in Table 2

(column 1, midpoints of 401 classes; column 2, frequency

for regional observations). This data set was obtained by

Sedimentation Seminar (1966), and consists of 488

cross-bed observations in the middle Mississippian

Salem Limestone of central Indiana. The rose diagram

shows clear bimodality, so we estimate the two

components separately. We do not formally use the

three-parameter short cut to get initial estimates, but will

get them by eye. It appears that the mean direction of

the larger of the two modes is about ~m1 ¼ 240�; and the

other vector mean is about ~m1 ¼ 60�: Although mode

two seems more concentrated than the other, we will use
~k1 ¼ ~k2 ¼ 2: The fraction of mode one appears to be

about 0.65 of the observations.

Application of the script (see data set

BimodeDataResults:txt) gives estimates of the two

components: m̂1 ¼ 238:8; k̂1 ¼ 1:48; m̂2 ¼ 57:2; k̂2 ¼
1:89; and p̂ ¼ 0:62: Note that the two estimated mean

directions differ by about 1801. The authors interpreted

the bimodality as arising from ‘‘y oscillating tidal

currents on a shallow marine shelf y’’ (Sedimentation

Seminar, 1966, p. 95), which is consistent with the

estimates.
4. Other information

4.1. Material in IAMG server

The IAMG server contains the following:
�
 The script Vector_Stats; which consists of 33

MATLAB m-files (scripts and functions). These m-

files may be modified by users for their own needs.
�
 A file titled READ_ME_STATS:txt that describes

operation of the script.
�
 A file titled TestData:txt that contains cross-bed

azimuths from the Bulgoo Formation in the Belford

Anticline, Australia. This data is Set 2 in Fisher

(1993, appendix B.6); see also Fisher and Powell

(1989). The data array is shown in Table 1.
�
 A file titled TestDataResults:txt TestDataRe-

sults.txt that contains the text file generated by

analysis of TestData:txt:

�
 A file titled BimodeData:txt that contains azimuths

of cross-beds in the Salem Limestone (Sedimentation

Seminar, 1966). The data set is shown in Table 2 and

Fig. 3. This sample is strongly bimodal, and may be

used for separating components of a mixture. Note

that this data set contains grouped data. Column 1

contains the azimuth-class midpoints and column 2

contains counts of the observations in each azimuth

class (their regional observations). For comparison,

note that the sixth and seventh columns contain the

numbers of entries corresponding to each mode.
�
 A file titled BimodeDataResults:txt that contains

the text file generated by analysis of the regional

observations in BimodeData:txt:

4.2. Axial variables

This paper and the script are aimed at vectorial data,

that is, each measurement represents a single-headed

vector direction. Direction of cross-bedding is a typical

example of this sort of data. However, geological

measurements commonly include orientations of axial

variables. Axial variables represent undirected lines;
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these phenomena arise from processes that leave

evidence of orientation but do not allow distinguishing

between direction y and y+1801. Examples of these

include groove marks on the soles of turbidite beds,

current lineations in sandstones, orientations of long

axes of pebbles in glacial till, and orientations of

feldspar laths.

A geologist developed the procedure for analyzing

axial data (Krumbein, 1939). Following Krumbein,

Fisher (1993, p. 37) recommends the following process.

Firstly, convert the axial directions c to vectors y by

yi ¼ 2ci ½mod360� for all i. Secondly, analyze the

resulting vectors using the methods described in this

paper. Finally, convert the estimated preferred direction

ŷ back to the axial direction by dividing by 2. Similarly

halve the width of the confidence interval on the

preferred direction. Fisher recommends leaving the

measures of concentration in vectorial units.
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