2. Density

Density = mass / volume (units: gm/cm^3 or kg/m^3)

a. Common Densities (gm/cm³)

(1)	Ice (solid H ₂ O)	0.92	
(2)	Water (liquid H ₂ O)	1.0	
(3)	Quartz	2.65	
(4)	Lead	10.5	,
(5)	Benzene	0.81	X d.
(6)	Seawater	1.03	4 E M
(7)	Dry air (0 C)	0.00129	' /\
(8)	Hot air (30 C)	0.00116	(<i>)</i>

IMPORTANT CONCEPT: Less dense objects will float in more dense liquids; more dense objects will sink in more dense liquids.

Density determines the nature of "floaters" and "sinkers"

Questions for Thought:

Given the density of lead above, if you had 21 gm of lead, what would it's volume be? Which has a greater density: 1000 kg of Benzene or 1 kg of Lead?

Will ice float in water and why?

Does lead float or sink in water and why?

Consider a freshwater river flowing into the ocean, what will happen to the river water once it flows into the ocean? and why?

WATTS, LESS DENSE

Why does a hot air balloon rise in the atmosphere?

III. Heat Energy and Temperature

- A. Heat internal energy within a substance = kinetic molecular energy
 - 1. high heat substances = high degree of kinetic molecular energy
 - a. i.e. the higher the heat the faster the vibration of atoms and molecules
- B. Temperature measure of the average amount of heat energy in a substance i.e. the average kinetic energy of a substance
 - a. Metric unit = Celsius, English unit = Fahrenheit
 - (1) Measured in terms of freezing and boiling points of water
 - (2) water freezes at 32° F = 0° C water boils at 212° F = 100° C