ATMOSPHERE: WEATHER PATTERNS AND STORMS

I. AIR MASSES

A. General

- Air Mass immense body of air, characterized by homogeneity of temperature and moisture at any given altitude
 - a. 1000 miles or more in breadth
 - b. Passes through area over the course of days
 - (1) e.g. Summer: heat wave, high temps, high humidities
 - (a) ends with series of thunderstorms and few days of cooler weather
 - (2) e.g. Winter: frigid clear, subzero cold spell
 - (a) ends with thick stratus clouds, rising temps. and snowfall.
- 2. Front: boundary between two adjoining air masses having contrasting characteristics
 - a. passage of a front marks a change in weather

B. Source Regions

- Source Region: area of earth's surface over which air masses assume their distinguishing characteristics
- 2. Types of Air Masses
 - Classified According to Latitude and Temperature
 - (1) Polar (P) air masses
 - (a) originate in high latitudes
 - (b) cold air mass temps.
 - (2) Tropical (T) air masses
 - (a) originate in low latitudes
 - (b) warm air mass temps
 - b. Classified According to Geographic Source and moisture
 - (1) Continental (C) designates land source
 - (a) On the dry side
 - (2) Maritime (M) designates ocean/water source
 - (a) On the wet side
 - c. Four Basic Types of Air Masses
 - (1) Continental Polar
 - (a) On dry and cold side
 - (2) Continental Tropical
 - (a) On dry and warm side
 - (3) Maritime Polar
 - (a) On wet and cold side
 - (4) Maritime Tropical
 - (a) On wet and warm side

C. Weather Associated with Air Masses

1. Relationships in U.S. East of Rockies (most influenced by Cp and Mt)

- a. Continental Polar Masses
 - (1) Originate in northern Canada, AK and Arctic
 - (2) Cool and Dry Air
 - (3) High Pressure, few clouds
 - (a) Winter: clear cold arctic air
 - (b) Summer: clear cool air
 - (4) Local Effects
 - (a) Great Lakes
 - i) "Lake Effect"
 - a) winter: cold arctic air, over warmer moisture air above Great Lakes
 - b) Lee side of lakes = wet, humid unstable air.... snow showers, heavy accumulation (Buffalo, Erie, etc.)
- b. Maritime Tropical Air Masses
 - (1) Originate in Gulf of Mexico, Caribbean/Atlantic
 - (2) Warm, moisture laden, unstable
 - (3) Responsible for most of rain in eastern 2/3's of US
 - (a) Summer: Mt into central and east US
 - i) heat, high humidity
- Pacific Northwest
 - a. Heavily influenced by Maritime Polar air masses from NW in Pacific
 - b. west side Cascade/orographic rainfall
- 3. Southwest
 - a. Continental Tropical Air
 - (1) Dry, warm, arid
 - (2) locally contained to Southwest
- 4. New England
 - a. Northeaster
 - (1) maritime polar air mass from northeast off N. Atlantic
 - (a) snow and frigid temps

II. FRONTS

- A. General
 - 1. Fronts- boundaries that separate air masses of different densities
 - a. one warmer and often higher in moisture
 - b. avg. 15-200 km wide, narrow compared to breadth of air mass
 - 2. Vertical Configuration
 - Warm air: less dense
 - (1) warm air over cold air (more dense)
 - (2) warm air/cold air interface often sloping/wedge shaped at low angle
 - b. Fronts often collisional in nature
 - c. Always warm air forced aloft, with colder bottom air acting as a wedge

B. Warm Fronts

- 1. warm air moves over wedge of cold air
 - a. map symbol: line with semi-circles extending into cold air
- 2. Average slope of warm front: 1:200 (V:H)
- 3. Ascending Warm Air
 - a. cooling by adiabatic expansion
 - b. often clouds and precipitation
 - (1) several hours of gentle precipitation over large region
 - (a) gentle slope of front does not encourage convective activity
 - c. Increase in temperature

C. Cold Fronts

- cold air moves into region of warm air
 - a. map symbol: line with triangular barbs extending into warm air
- 2. Average slope of cold front: 1:100 (V:H)
 - a. steeper than that of warm front
 - b. cold fronts in general advance more rapidly than warm fronts
- 3. Actively forces warm air aloft
 - a. cold fronts produce more violent weather
 - (1) sudden downpours
 - (2) wind gusts
 - (3) >intensity, < duration compared to warm front
- 4. Behind Front
 - a. cold air mass, subsiding air
 - b. Often clear and cold behind the front

D. Occluded Fronts

- 1. Cold front over takes a warm front
- 2. Wedging of warm air aloft between two cold air masses
- 3. Complex weather patterns/ heavy or light rain possible

III. MIDDLE LATITUDE WAVE CYCLONES (LOW PRESSURE SYSTEMS)

A. General

- 1. At Middle Latitudes (Like U.S.)
 - Cold and Warm Front Activity Commonly Associated with Low Pressure Systems
 - (1) Cyclone = low pressure system, counterclockwise rotation
 - (a) Common Harbringer of Rainfall to Central and Eastern U.S.
 - (2) "Wave" Cyclone- refers to a low pressure system comprised of cold and warm air, with the front commonly bending into a swirling low pressure system
- B. Role of Upper Level Jetstream in Maintaining Low Pressure System
 - 1. Cyclone: low pressure system with converging air drawn inward
 - with inward flow, if there were no mechanism for air escape, the low pressure area would eventually "fill up" with converging air and cease to exist

- (1) However, we know that low pressure systems can exist for low periods of time, migrating across U.S.
- 2. Upper level air flow
 - With converging air into low pressure system, air is piped to higher altitudes aloft, where it escapes the low pressure zone into the upper jetstream
 - (1) "piping" of air through the low to the jet stream allows low pressures to be maintained in the cell over longer periods of time
 - (a) otherwise the cell would "fill up" and the pressure would rise
 - b. Air flow aloft also helps direct and mobilize cyclonic systems through shear flow
- 3. Moral of the story: air flow aloft, is important in maintaining and influencing lower level weather patterns

IV. THUNDERSTORMS

- A. Thunderstorms
 - 1. lightening, thunder, localized intense rain fall, high energy events
 - 2. associated with billowing cumulonimbus clouds
- B. Formation and Associations
 - 1. T-storms associated with cumulonimbus clouds
 - a. U.S. common associated with Mt air masses derived from Gulf of Mexico and migrate northward
 - b. Also: associated with cold fronts and forcful lifting of unstable air
 - 2. Process
 - a. warm moist air lifted aloft
 - (1) heat loss and instability with > altitude
 - (2) common in afternoon and early evening at max. surface temperatures
 - b. Towering cumulonimbus clouds
 - (1) upward of 12,000 m in height
 - (2) requires continual supply of warm moist air
 - (a) cumulative effect to reach great heights
 - (3) strong updrafts up to 62 mph
 - (4) at point of moisture/drops > updrafts = cloud burst of rain
 - (a) upon release of moisture: strong downdrafts, wind gusts, intense rainfall
 - (b) life of cumulonimbus clouds ~1 hour between origination and down pour
 - c. Lightening
 - (1) cloud discharge of electricity
 - (a) Process
 - i) associated with movement of precipitation in cloud

- ii) Charge accumulation
 - a) Upper portion of cloud = positive charge
 - b) lower poriton of cloud = negative charge
 - c) charges build to millions/hundreds of millions of volts before lightening is discharged
- iii) Discharge/lightening
 - a) charge buildup until discharge
 - b) rapid multiple strokes of electrical charge from cloud to ground or from cloud to cloud
 - c) 1/10th of sec. to discharge lightening bolt

(2) Thunder

- (a) lightening---rapid heating of air upon passage----violent expansion of superheated air
 - i) explosive air expansion = thunder
- (b) "heat lightening" = lightening occurring too far away to hear thunder (>20 km)

V. TORNADOES

- A. Tornado =
 - 1. local storm of short duration
 - 2. violent wind storm emanating from a funnel-shaped spiraling column of air
 - 3. Low pressure centers, up to 10% lower than outside column
 - 4. Rapid convergence of air to low pressure center
 - a. swirling inrushing air
 - b. high pressure gradients = air flow up to 300 mph
 - 5. tied to cumulonimbus cloud, form in association with thunderstorms
 - 6. Dimensions/velocity
 - a. D = 500-2000 Ft, Vel up to 28 mph
 - b. Tornado tracks up to 16 miles long
- B. Frequency and Occurrence
 - 1. dominant in U.S. in April through June
 - 2. Avg. 780/yr in U.S.
 - 3. Tstorms and tornadoes commonly associated with middle-latitude cyclone development from above
 - a. Cp air from canada mixing with Mt air from Gulf of Mexico
 - (1) intense temp. differences
 - (2) commonly meet in central U.S.
 - (3) most common point of occurrence for Tstorms and tornadoes

VI. HURRICANES

- A. Hurricanes- whirling tropical cyclones with wind speeds up to 185 mph
 - 1. highly destructive because of high winds in coastal areas
 - 2. may form 50 "storm surge" waves
- B. Character
 - 1. Form in tropical waters between 5 and 20 Latitude
 - a. Atlantic = "Hurricanes"
 - (1) U.S. avg. = 5/yr

- b. Pacific = "typhoons"
 - (1) N. Pacific highest no. of occurrence =20/yr
- c. Indian = "Cyclones"
- 2. Characteristics
 - a. wind speed = > 74 mi/hr
 - b. rotary counterclockwise circulation
 - c. Dimensions
 - (1) D=375 mi
 - (2) Height = up to 40,000 Ft altitude
 - d. Low pressure centers
 - (1) outside press. inside press. = 60 millibars
 - (2) steep pressure gradient
 - (3) inward, converging, spiraling winds
 - e. Upper level air flow
 - (1) divergent and outward, maintaining the low pressure center of the storm
- 3. Morphology
 - a. Eye of Hurricane
 - (1) low pressure center of cyclone
 - (a) avg. 12 mile in Diameter
 - (b) zone of calm and scattered clould cover
 - (c) warm zone
 - b. swirling rotation of storm function of coriolis effect
- 4. Process
 - a. Hurricane = heat energy built up and liberated by release of water vapor
 - b. hurricanes form over oceans in late summer, with abundant warm moist air plentiful
 - (1) water temps to 80 F, warm moist overlying air
 - (2) can not form in cool water temps, hence limited latitudinally
 - c. Storm Progression
 - (1) Tropical depression- cyclone with wind speed < 38 mi/hr
 - (2) Tropical Storm- cyclone with wind speed 38-74 mi/hr
 - (3) Hurricane cyclone with wind speed > 74 mi/hr
 - (4) Land docked hurricane
 - (a) loses moisture source
 - (b) frictional effect of land slows winds
 - (c) pressure gradient dissipated
- C. Identification
 - 1. weather satellit imagery
 - 2. storm tracking and prediction
 - 3. emergency management and contingency in coastal areas
- D. Destructive Force
 - 1. high winds/wind shear
 - 2. Storm surge in coastal areas