ATMOSPHERIC MOISTURE

I. INTRODUCTION

- A. Water Vapor accounts for 0-4% of atmospheric composition by volume
 - 1. Water Vapor: most important gas in atmosphere
 - a. Fundamental component of hydrologic cycle
 - b. High heat capacity: important for heating and heat transfer in atmosphere
 - c. Controls weather patterns, cloud formation, meteorlogical phenomena
- B. Precipitation Patterns
 - 1. control climate, vegetation, human habitation, surface geological processes
 - 2. Vary from geographic location to location

II. CHANGES OF STATE: WATER VAPOR

- A. Water Vapor
 - 1. Three states of matter
 - a. gas
 - b. liquid
 - c. solid
 - Unlike N, O and CO₂ (stable gases at all earth surface temps); water vapor is very temp. sensitive and readily changes states depending on heat energy in atmospheric system
- B. Water Vapor and States
 - 1. Evaporation- converting liquid water to water vapor-gas
 - Condensation- converting water vapor/gas to liquid
 - 3. Freezing- converting liquid water to solid ice
 - a. Melting- solid changed to liquid
 - 4. Sublimation- converting water vapor/gas directly to solid ice
- C. Thermal Budget and States
 - States of matter a function of amount of heat in system, which in turn influences the vibrational rates of molecules
 - a. gas high rate of vibration, high heat condition
 - b. liquid- medium rate of vibration, medium heat system
 - c. solid- low rate of vibration, low heat system
 - 2. Heat Energy
 - a. measured in calories
 - (1) amount of energy required to raise the temperature of 1 gram of water 1 degree C
 - Heat and State Transformation
 - a. Evaporation: water liquid to vapor = system must absorb 600 Cal of energy
 - (1) energy absorbed by molecules, > rate of vibration to allow phase change

- (2) latent heat of vaporization = "stored heat" that is exchanged to cause phase change
- b. Condensation: water vapor to liquid = system must lose 600 Cal of energy
 - (1) < vibratory motion
 - (2) latent heat of condensation
 - (3) Condensation/heat transfer
 - (a) drives storm systems
 - (b) affects climate
 - (c) transfers heat from equator to poles
 - (d) results n cloud phenomena
- c. Melting: solid ice changed to liquid = system must gain 80 calories of energy
- d. Freezing: liquid to solid = system must lose 80 calories of energy
 - (1) latent heat of fusion for water
- e. Sublimation: solid to gas or gas to solid = system must gain 680 cal of energy or lose 680 cal of energy respectively for transformation to occur
 - (1) e.g. dry ice sublimates to gaseous carbon dioxide with no intervening liquid phase

III. HUMIDITY

A. Terminology

- 1. Humidity- amount of water vapor in air
- 2. Vapor Pressure- total atmospheric pressure that can be attributed to water vapor content
- 3. Vapor Saturation- maximum amount of water vapor the air can hold,
 - a. rate of evaporation = rate of condenstation
 - b. "Vapor Capacity"- measure of amount water vapor air can hold
 - c. Temperature dependent
 - >T, air can hold more moisture (>expansion of volume, > motion of molecules)
 - (2) <T, air can hold less moisture (< expansion of volume)

Temp. C	Vapor Capacity (gm/kg)
-40	0.1
-20	0.75
0	3.5
10	7
20	14
30	26.5
40	47

- (3) Thus by taking an unsaturated system to lower temperature, system can become saturated
- 4. Specific Humidity- amount of water vapor contained in unit of air (expressed as wt. of vapor/mass of air = gm/kg)
 - a. not affeted by changes in pressure or temperature
- 5. Relative Humidity- ratio of airs water vapor content to its water vapor capacity at a given temperature

for given temp.

E.g. referring to table above, given a temp of 20 C, vapor capacity of air is 14 gm/kg. Assume a specific humidity of 7 gm/kg, relative humidity = $7/14 \times 100\% = 50\%$

a. Temperature influence on relative humidity

Relative humidity changes with temperature according to vapor capacity of air. In example above at 20 C, vapor capacity is 14 gm/kg, assuming a specific humidity of 7 gm/kg, relative humidity = 7/14 x 100% = 50%.

By decreasing the temperature to 10 C, vapor capacity of air is now 7 gm/kg, assuming the same specific humidity of 7 gm/kg, the relative humidity = $7/7 \times 100\% = 100\%$ humidity.

Vapor capacity must be exceeded to oversaturation for condensation/precipitation to occur

- (1) In sum: a decrease in air temperature will result in an increase in relative humidity, and an increase in air temperature will result in decrease in relative humidity
- (2) <T, > R.H.; >T, < R.H.
- (3) In terms of absolute air moisture...
 - (a) cold air contains less specific humidity than warm air, although cold air relative humidity and warm air relative humidities may be identical (e.g. 85%), the vapor capacities are different, and the warm air will have much more moisture than cold air at same relative humidity
- 6. Dew Point Temperature
 - a. Temperature at which air would have to be cooled in order to reach saturation
 - (1) at temperatures colder than dew point, air vapor capacity is exceeded and condensation would occur

IV. CONDITIONS FOR CONDENSATION

- A. Condensation of water vapor in atmosphere to liquid state; result:
 - 1. dew
 - 2. fog
 - 3. clouds
- B. Necessary condition:
 - 1. air must reach vapor saturation for condensation to occur
 - a. via temp. drop below dew point (most common)
 - b. addition of water vapor to air (less common)
 - 2. Must be surface upon which water vapor can condense
 - a. condensation nuclei or hygroscopic nuclei
 - (1) particulate matter in atmosphere which serves as surface for water vapor to condensate
 - (a) microscopic dust, smoke, salt particles from ocean
- C. Cloud Formation
 - 1. condensation on particulate matter/condensation nuclei
 - 2. droplets form on millions of tiny particles
 - 3. clouds = fine condensed droplets that remain suspended in air
 - a. different than much larger rain drops which fall to ground

V. CONDENSATION, CLOUDS, ADIABATIC TEMP. CHANGES

- A. Cloud and fog formation require cooling of air to its dew point
- B. Adiabatic Heat Changes in Air
 - 1. Air Pressure, Temperature and volume are inter-related
 - a. As air volume expands, pressure decreases, and temperature decreases (i.e. air cools)
 - b. As air volume contracts, pressure increases, temperature increases (air warms)
 - 2. Rising Air: experiences Pressure < at higher elevations, volume of air expands --- net result = cooling of air
 - a. cooling of air below dew point = cloud formation
 - 3. Dry adiabatic rate = temperature gradient of rising air to dew point
 - a. dry adiabatic rate = 10 C/1000m altitude (i.e. cools 10 C for every 1000m rise in altitude)
 - 4. Wet Adiabatic Rate = temperature gradient of rising air after clould formation begins (i.e. past dew point)
 - a. wet adiabatic rate = 5C/1000m altitude

VI. ATMOSPHERIC STABILITY

- A. Controls on vertical movement of air masses a function of temperature of air relative to surrounding ambient air
 - 1. Stable air: temperature of rising (adiabatic) air mass < temperature of upper elevation air, air mass will tend to resist vertical motion
 - 2. Unstable air: temperature of rising (adiabatic) air mass > temperature of upper elevation air, air mass will tend to rise vertically like a hot air balloon
 - a. at >T, D air < (rises)
 - b. at <T, D air > (sinks)
- B. Stability and Weather
 - 1. Stable forced air aloft, widespread cloud formation relatively thin, little precipitation, drizzle-dreary day
 - 2. Unstable air forced aloft: billowing clouds represent hot air surging upward

VII. FORCEFUL LIFTING

- A. Air may be forced upward regardless of stability of air mass or adiabatic processes
- B. Methods of Forceful lifting of air
 - 1. Convergence- flowing of air masses together, occupies less space, air column forced to rise vertically
 - a. air forced to rise upward
 - b. enhances instability
 - c. E.g. Florida: on warm summer days
 - (1) Atlantic air flow westward over land
 - (2) Gulf air flow eastward over land
 - (a) convergence + vertical uplift + intense solar heating = high rate of thunderstorm occurrence (greatest occurrence in U.S.)
 - 2. Orographic Lifting- sloping terrain/mountain slopes act as barriers to air flow, forces air to ascend
 - a. Rain fall on windward side, rising moist air masses, <Temp during ascent, >saturation point.... rain
 - (1) e.g. Mt. Waialeale Hawaii: 38 Ft rain/yr
 - b. Lee sides: dry air descends... orographic deserts
 - (1) Rain shadow deserts
 - (2) e.g. Columbia Basin of Wash, Mojave of Calif.
 - 3. Frontal Wedging- cool air acts as a barrier over which warm, less dense air rises a. Responsible for rainfall patterns over much of continental U.S.

- (1) Cold Fronts moving in from w-nw, forcing warm continental air above
 - (a) Arctic/Canandian cold fronts moving into US
- (2) Warm Fronts moving in from w-nw, riding over cold
- b. Cloud Process
 - (1) Warm stable air over wedge of cold air
 - (a) frontal lifting, widespread thin cloud cover, light rains and drizzle
 - (2) warm unstable air over wedge of cold air
 - (a) frontal lifting, billowing clouds/thunderheads

VIII. CLOUDS

- A. Clouds- condensated water vapor, comprised of aggregates of very small droplets of water or thin crystals of ice
- B. Cloud Classification: based on appearance and height
 - 1. Three Basic Forms
 - a. Cirrus- high, white and thin
 - (1) veil-like patches and wispy fibers
 - b. Cumulus- cotton ball masses, "cauliflower like" structure
 - c. Stratus- sheets or layers that cover much or all of the sky, no distinct individual cloud units
- C. Elevation of Clouds
 - 1. High Clouds- bases above 6000 m
 - 2. Middle Clouds- bases between 2000 6000 m
 - 3. Low Clouds -bases below 2000 m
 - 4. Clouds of vertical development- transcend to high elevations: e.g. unstable thunderheads

IX. FORMATION OF PRECIPITATION

- A. General
 - 1. If all clouds are water vapor, then why do only some lead to rain?
 - a. cloud drops very small: D = 10 micrometers
 - b. small drops held in suspension by air mass
 - c. growth through condensation is very slow
 - d. evaporation is occurring as well
 - 2. Rain Droplets
 - a. 1 million times more volume than cloud droplet

- b. to form: must coalesce cloud drops to form rain drops
 - (1) must fall through air column without evaporation

B. Rain Drop Formation

- 1. Collision-coalescence process
 - a. cloud droplets must be >20 um for rain drops to form
 - b. condensation nuclei required for coalescence of vapor
 - (1) (dust, particulates)
 - c. water droplets fall and coalesce with other droplets, growing in size
 - (1) drops must be large and plentiful to survive evaporation before reaching the earth's surface
 - (2) rain = larger drops
 - (3) drizzle = fine drops

X. SLEET, GLAZE AND HAIL

- A. Sleet- particles of ice produced by warm air over freezing air, rain falls from warm air through freezing... frozen rain drops
 - 1. winter phenomena
- B. Glaze- freezing rain
 - 1. supercooled rain drops that become frozen upon impact with trees, branches and surfaces
- C. Hail- hard rounded pellets of ice
 - 1. may have concentric internal structure, D = 1-10 cm
 - a. largest recorded in Kansas D = 14 cm, 1.5 lbs.
 - 2. Destructive to property and crops
 - 3. Form from rising unstable air masses, towering thunderheads (cumulonimibus clouds)
 - a. supercooled water drops "recycled" through cloud many times owing to strong updraft
 - (1) ice fall, updraft, lifting, ice fall, accumulation until mass > updraft shear

XI. FOG

- A. Fog- cloud with base at or very near ground, same general structure as cloud
 - 1. visibility hazard: dense fog can severely reduce visibility
- B. Formation Mechanisms

- 1. Advection Fog- warm, moist air blown over a cool surface
 - a. e.g. Cape Disappointment, WA: warm moist Pacific air blown over cool California Current
- 2. Radiation Fog- forms by rapid cooling of earth's surface (common on very clear nights where surface heat escapes readily)
 - a. air above ground surface cooled below dew point
 - b. air cools, sinks to low-lying areas/valleys
- 3. Evaporation Fog- cool air moves over warm water, "steam" rises from water as evporation from water occurs, air above reaches saturation point
 - a. e.g. lakes/rivers