ES104 Final Quiz 3 Study Guide – Summer 2019

RECOMMENDED STUDY TECHNIQUES

- 1) review the "How to Study Physical Science" guide available on the web site.
- 2) use the concepts below as a guide to help you focus on your notes
- 3) memorize terms and concepts (make flash cards, rewrite definitions 100 times, etc.)
- 4) go back over the labs and make sure you can do the tricks / skills
- 5) review some of the important figures in your lab manual and text
- 6) go back over the previous study guides; review Moodle Practice Questions
- 7) be able to link the terms to concepts, and the concepts to Earth processes
- 8) Go to the class website and view all "Slide Shows/Figures / Overheads to Accompany Class Notes"

Plate Tectonics

Transform

Seismology / Earthquakes Volcanism / Igneous Activity

Week 2 - Plate Tectonics	Convergent	Volcanic Islands
	Subduction	Subduction Zone Types
Mineral	Subduction Trench	Oceanic-Oceanic
Element	Volcanic Arc	e.g. Japan
Rock	(e.g. Cascades)	Oceanic-Continental
Rock Types	Plate Destruction	e.g. Cascades
Igneous	accretionary tectonics	Continental-Continental
e.g. basalt	Divergent	e.g. Himalayas
e.g. granite	Seafloor Spreading	Plate Motion Rates
Sedimentary	Mid-Oceanic Ridge	1-10 cm/yr
e.g. sandstone	Plate Creation	Continental Rifting
Metamorphic	Transform Fault	e.g. Red Sea
Magma	e.g. San Andreas	
Lava	e.g. Offset Mid-	Plate Driving Mechanism
Weathering	Ocean Ridge	Internal Heat
Sediment	Alfred Wegner	Radioactive Source
Volcano	Continental Drift	Heat Exchange
Earthquake	Jig-Saw Fit of Continents	Mantle Convection
Seismology	Pangaea	Convection cells
Crust	Match-up of Fossils	rising hot rock
Oceanic	Match-up of Geology	sinking cool rock
Continental	Modern Evidence	Ridge Push
Lithosphere (Plate)	Paleomagnetism	Trench Pull
Crust	Seafloor Stripes	Density Driven
Upper Mantle	Polar Wandering	
Asthenosphere	Normal Polarity	Week 3 - Earthquakes
Outer Core	Reverse Polarity	earthquake
Inner Core	Seismic Distribution	epicenter
Plate Tectonics	Volcanic Distribution	focus
Plate Boundaries	Hot Spots	wave refraction
Convergent	Hot Spot Tracks / Hawaii	wave reflection
Divergent	Hawaiian Islands	s-wave shadow zone

p-wave shadow zone

Seamounts

seismic risk Richter Scale products of volcanic eruptions seismic hazard lava – pyroclastics - gas seismicity low silica lava = basaltic p wave tsunami ground shaking pahoehoe s wave earthquake / landslides compressional wave liquefaction shear wave high silica lava = rhyolitic surface wave escaping gases love wave Week 3 – Pacific Northwest water vapor Earthquake Hazards San Andreas Fault carbon dioxide fault creep Oregon / Pacific Northwest hydrogen sulfide stick-slip PNW earthquake hazards pyroclastic materials subduction zone fine ash fault blind fault earthquakes pumice crustal earthquakes cinders seismic waves source of earthquakes volcanic earthquakes blocks / bombs normal fault paleoseismology anatomy of volcano reverse fault last PNW big event = 300 yrtsunami deposits (sand) strike slip fault crater fault strand bay mud caldera coastal uplift fault zone magma chamber coastal subsidence fault segment central vent ductile deformation marsh submergence flank eruption elastic deformation tsunami cycle volcano types brittle deformation **Risk Factors** shield (e.g. Newberry, elastic rebound GPS / ground motion Hawaii) hazard cinder (e.g. Lava Butte) foreshocks risk stratovolcano aftershocks (e.g. Mt. Hood) main shock alluvium wave form bedrock collapsed caldera (Crater Lake) Intrusive Igneous Bodies wavelength groundwater dikes frequency Monmouth hazards amplitude Willamette Valley hazards sills body waves saturated sediments laccoliths surface waves ground shaking batholiths longitudinal waves stocks primary waves Week 3 – Volcanism volcanic necks shear waves volcanic eruptions transverse waves explosive eruption seismograph quiescent eruption seismogram magma viscosity factors first p-wave arrival temperature first s-wave arrival silica content p wave velocity gas content s wave velocity >temp, < viscosity surface wave velocity <temp, > viscosity epicenter / triangulation >silica, > viscosity Mercalli Scale <silica, <viscosity

>gas, > explosiveness >viscosity, > explosiveness

earthquake intensity

earthquake magnitude