ES104 Quiz 3 Study Guide – Summer 2024

Quiz 3 (20 Pts) Monday July 15, 2024

RECOMMENDED STUDY TECHNIQUES

- 1) review the "How to Study Physical Science" guide available on the web site.
- 2) use the concepts below as a guide to help you focus on your notes
- 3) memorize terms and concepts (make flash cards, rewrite definitions 100 times, etc.)
- 4) go back over the labs and make sure you can do the tricks / skills
- 5) review some of the important figures in your lab manual and text
- 6) go back over the previous study guides; review Canvas Practice Questions
- 7) be able to link the terms to concepts, and the concepts to Earth processes
- 8) Go to the class website and view all "Slide Shows/Figures / Overheads to Accompany Class NotePlate Tectonics

Seismology / Earthquakes Volcanism / Igneous Activity

Ç	•	
Week 2 - Plate Tectonics	Transform	Oceanic-Oceanic
	Convergent	e.g. Japan
Mineral	Subduction	Oceanic-Continental
Element	Subduction Trench	e.g. Cascades
Rock Cycle	Volcanic Arc	Continental-Continental
Rock Types	(e.g. Cascades)	e.g. Himalayas
Igneous	Plate Destruction	Plate Motion Rates
e.g. basalt	Divergent	1-10 cm/yr
e.g. granite	Seafloor Spreading	Continental Rifting
Sedimentary	Mid-Oceanic Ridge	e.g. Red Sea
e.g. sandstone	Transform Fault	
Metamorphic	e.g. San Andreas	Plate Driving Mechanism
Magma	e.g. Offset Mid-	Internal Heat
Lava	Ocean Ridge	Radioactive Source
Weathering	Alfred Wegner	Heat Exchange
Sediment	Continental Drift	Mantle Convection
Volcano	Jig-Saw Fit of Continents	Convection cells
Earthquake	Pangaea	rising hot rock
Seismology	Match-up of Fossils	sinking cool rock
Crust	Match-up of Geology	Ridge Push
Oceanic	Modern Evidence	Trench Pull
Continental	Paleomagnetism	Density Driven
Lithosphere (Plate)	Seafloor Stripes	
Crust	Normal Polarity	Week 3 - Earthquakes
Upper Mantle	Reverse Polarity	earthquake
Asthenosphere	Seismic Distribution	epicenter
Outer Core	Volcanic Distribution	focus
Inner Core	Hot Spots	wave refraction
Plate Tectonics	Hot Spot Tracks /	wave reflection
Plate Boundaries	Hawaiian Islands	s-wave shadow zone
Convergent	Seamounts	p-wave shadow zone
Divergent	Subduction Zone Types	seismic risk

seismic hazard	seismicity	products of volcanic eruptions
p wave	tsunami	lava – pyroclastics - gas
s wave	ground shaking	low silica lava = basaltic
compressional wave	earthquake / landslides	pahoehoe / aa
shear wave	liquefaction	high silica lava =
surface wave		rhyolitic
love wave	Week 3 – Pacific Northwest	volcanic gases
San Andreas Fault	Earthquake Hazards	water vapor
fault creep	Oregon / Pacific Northwest	carbon dioxide
stick-slip	PNW earthquake hazards	hydrogen sulfide
fault	subduction zone	pyroclastic materials
blind fault	earthquakes	fine ash
seismic waves	crustal earthquakes	pumice
source of earthquakes	volcanic earthquakes	cinders
normal fault	paleoseismology	blocks / bombs
reverse fault	last PNW big event = 300 yr	
strike slip fault	tsunami deposits (sand)	anatomy of volcano
fault strand	bay mud	crater
fault zone	coastal uplift	caldera
fault segment	coastal subsidence	magma chamber
ductile deformation	marsh submergence	central vent
elastic deformation	tsunami cycle	flank eruption
brittle deformation	Risk Factors	volcano types
elastic rebound	GPS / ground motion	shield (e.g. Newberry,
foreshocks	hazard	Hawaii)
aftershocks	risk	cinder (e.g. Lava Butte)
main shock	alluvium	stratovolcano
wave form	bedrock	(e.g. Mt. Hood)
wavelength	groundwater	collapsed caldera (Crater Lake)
frequency	Monmouth hazards	Intrusive Igneous Bodies
amplitude	Willamette Valley hazards	dikes
body waves	saturated sediments	sills
surface waves	ground shaking	laccoliths
longitudinal waves		batholiths
primary waves	Week 3 – Volcanism	stocks
shear waves	volcanic eruptions	volcanic necks
transverse waves	explosive eruption	a
seismograph	quiescent eruption	Skills and Concepts
seismogram	temperature	
first p-wave arrival	silica content	Can you sketch the interior of
first s-wave arrival	gas content	the Earth?
p wave velocity	magma viscosity factors	
s wave velocity	>temp, < viscosity	Can you complete basic unit
surface wave velocity	<temp,> viscosity</temp,>	calculations from English to
epicenter / triangulation	>silica, > viscosity	Metric and vice versa?
Mercalli Scale	<silica, <viscosity<="" td=""><td>Con viou coloulate de</td></silica,>	Con viou coloulate de
earthquake intensity	>gas, > explosiveness	Can you calculate density?
earthquake magnitude	>viscosity, >	If given conversion factors
Richter Scale	explosiveness	If given conversion factors, can

you work a unit conversion problem?

Which direction does heat flow and why?

Why does a hot air balloon rise? Why do hot rocks rise? Why does magma rise, Why do their cold counterparts sink?

What types of geologic features are found at what types of plate boundaries? (e.g. volcano, earthquake, mountains, volcanic islands?)

Can you draw and label a crosssection of a subduction zone? a seafloor spreading center?

How do we know that Hawaii is located over a hotspot? What is a hot spot?

What is the difference between continental drift and plate tectonics?

How did the theory of plate tectonics evolve?

Can you draw a diagram of the plate tectonic setting of the Pacific Northwest?

Can you associate / match plate tectonic setting to geologic - geographic areas, as discussed in class?

Can you calculate the rate of plate motion in cm/yr?

If given a seismography with arrival times of P-S-surface waves, can you locate the geographic epicenter of an earthquake on a map?

Based on topographic map pattern, can you identify the difference between a shield volcano and a stratovolcano?

Based on observing images and diagrams, can you identify basic volcanic and igneous features such as cinder cones, stratovolcano, shield volcanoc, ash deposits, lava flows, aa vs. pahoehoe flows, dikes, sills, batholiths