Wells, Stephen G., and Harvey, Adrian, M., 1987, Sedimentologic and geomorphic variations in storm-generated alluvial fans, Howgill Fells, northwest England: Geological Society of America Bulletin, v. 98, p. 182-198.

I. Introduction

- A. Alluvial Fan settings
 - 1. humid regions
 - 2. tectonic mountain fronts
 - 3. stable footslopes and valley junctions
- B. Fan Processes
 - 1. stream flow
 - 2. debris flow
 - 3. hyperconcentrated flow
- C. Controls on sed. processes
 - 1. tectonic, climateic, spatial-distal relations
 - 2. hydrologic conditions for sed. mobilization
 - a. catastrophic storms
- D. Sed. Facies
 - 1. debris flow, stream flow, transitional
 - a. proximal to distal relations
- E. This Paper
 - 1. high intensity short duration storm, NW England
 - a. Howgill Fells, 1982
 - (1) destabilized hillslopes
 - (2) 13 fans activated
 - (3) local debri cones
 - (4) common fan dep. at trib. junctions
 - 2. Facies Relations
 - a. some not related to climate, tectonics
 - 3. Emphasis: under constant climatic and tectonic conditions, depositional processes may vary according to intrinsic geomorphic thresholds
 - a. i.e. not all facies changes are climatic or tectonic in nature
- II. Strom Hydrology and Physical Setting
 - A. storm, 6/6/82
 - 1. thermal convective, variable spatially
 - 2. 2.5 hr storm, 55-80 mm; 100-500 yr storm

- 3. peak trib. Q 11-30 cu. m/sec
- B. Geomorphic response
 - 1. overland flow
 - 2. landslides
 - 3. debris flows
 - 4. eroded channel banks, deposition in fans at tribs.
 - a. fans on old fans
 - b. fans inset into old fans
- C. Geology
 - 1. Silurian clastics, covered by Pleistocen soliflucted glacial depoists
 - 2. Sed. sources for 82 event
 - a. fine seds. from soliflucted till in gully walls
 - b. bedrock in channels
 - c. older fan seds.
- III. Study Sites and Methods
 - A. several fans for comparative sedimentology
 - 1. fan surveying, map work
 - 2. photos
 - 3. texture analysis
 - a. clast size
 - b. sieve samples
 - c. strat. sections,
- IV. Facies Types and Sedimentary Processes (includes some very nice maps and profiles of fans, showing facies and morphology, a good example of how to do it!)
 - A. Type D1 Facies: viscous debris flows
 - 1. lobate forms, steep snouts
 - 2. pressure ridges
 - 3. diamicts, crude coarsening up sequences
 - 4. breeched levee deposits
 - clast fabric relations observed
 - 6. Processes
 - a. laminar, non-Newtonian viscous slurry flow
 - b. pulsing, surging with pressure ridges
 - B. Type D2 Facies: dilute debris flows
 - 1. thinner, broader and lack clast fabric
 - 2. gentler lobe fronts
 - 3. "runout" deposits
 - 4. interp.:

- a. dilute non-Newtonian flow
- b. slight > in moisture conditions

C. Type T1 Facies: transitional flow deposits

- 1. stacked lobe depoist, high relief
- 2. clasts dip into depressions, suggest collapse
- 3. upper surface = gravel armor
- 4. local stratification / fluvial deps.
- 5. weak internal strat. near lobe front
- 6. process interp.
 - a. dilute, less viscous non-Newtonian flow (more dilute than D2)
 - b. transitional between debris and stream flow
 - c. late-phase cycle of debris activity
 - d. hyperconcentrated flow conditions
 - (1) horizontal strat.
 - (2) clast support
 - (3) better sorting than debris flows

D. Types S1 and S2 Facies: fluvial boulders and bars

- 1. bar deposits, matrix free, imbricated
 - a. long, and transverse bars
- 2. long axis of clasts perp. to flow directions
- 3. boulder trains behind obstacles

E. Type S3 Facies: fluvial sheet deposits

- 1. planar stacked sheets of mod. sorted gravels
- 2. bar and swale morphology
- 3. sl. finining up relations
- 4. interp.
 - a. sheet flood conditions
 - b. sed. conc. < debris flow, hyperconc. flow

V. Sequence of Depositional and Erosional Events

A. General

- 1. no one fan displays all facies
- 2. fans are characterized by particular facies
- 3. late-stage modification of fans by channel reworking

B. General Segeunce of Process observed on fans

- 1. Temporal and spatial variations in facies deposition during storm
 - a. variable water: sed ratio
- 2. Early phase: debris flow to transitional flow
 - a. large sed. input from slope failure

- 3. Dilute conditions
 - a. transition to hyperconc. flow to stream flow
 - b. net sequence of facies: debris flow, hyperconc. flow, stream flow

VI. Discussion

- A. Alluvial Fan Classification: Facies Assemblages
 - 1. stream flow 77% all facies i.d. from event
 - 2. debris flow 14% of all fan facies
 - 3. Fan classif. based on facies types
 - a. a: dominated by viscouse debri flow
 - (1) small basins, steepest slopes
 - b. b: fans dominated by transitional facies
 - (1) more dilute
 - (2) larger catchment basins
 - (3) < gradients
 - c. c: fluvial facies fans
 - (1) < area of drainage over b
 - d. d: sheet fluvial deposits
 - (1) largest basins, highest Q, lowest grad.
 - (2) stacked fluvial deps.
- B. Conceptual Model of Fan Deposition and Erosion
 - 1. Nice summary diagram, have seen this before from wells
 - a. catchment >, slope <, % area eroded during storm < = tendency towards stream-flow facies
 - b. catchment <, slope>, % area eroded during storm > = tendency towards debris flow facies
 - c. At any given fan over time (sequence of events)
 - (1) initiation
 - (2) most viscous flow
 - (3) gradual dilution
 - (4) stream flow
 - (5) final phase channel modification and erosion of deposits
- C. Factors Controlling Facies Types (based on discriminant stat. analysis)
 - 1. controls of facies and fan entrenchment
 - a. thresholds related to catchment morphology
 - b. type of sediment available for transport
 - c. position of fan within storm cell
 - 2. NOTE: facies changes classically attributed to either climate or tectonics (extrinsic

controls)

- a. In this case: those factors are constant and facies changes occur due to intrinsic factors above, not extrinsic controls
- b. Sed. facies interpretations beware!!!!

VII. Conclusions

- A. Storm in NW England in 1982
 - 1. activated hillslopes
 - 2. deposition in 13 alluvial fans
 - 3. six facies i.d. representing debris, stream and hyperconcentrated flow
 - 4. localized accretion of 2m on fan surfaces
 - 5. local deposition of up to 10 stacked gravel layers during single dep. event
 - 6. strat sequenc: debris to transitional to streamflow facies
 - 7. late stage fan incision/reworking
 - 8. relative facies distribution controlled by catchment area, slope, sed. supply and precip. variations in storm cell
- B. Wolman and Miller principal of mod. freq. events more greatly mod. landscape not suggested here
 - 1. high mag. low freq. events doing more work