Ritter, D.F., Kochel, R.C., and Miller, J.R., 1995, Process Geomorphology 3rd Ed.: W.C. Brown Publishers, Dubuque, IA, 539 pp.

Excerpts from Chapter 7 Fluvial Landforms

- I. Piedmont Environments: Fans and Pediments
 - A. Definitions: Mountain Front Morphologies
 - 1. piedmont- sloping surface along front of mountain
 - 2. pediments- eroded bedrock plain along piedmont region
 - 3. alluvial fans- fan-shaped alluvial deposits fed out onto the piedmont from mountain canyons

B. Alluvial Fans

- 1. Conditions
 - a. found in all climates (arid, humid glacial, humid temperatue, humid tropical)
 - b. represent link of transfer process moving debris down water shed
- 2. Morphology
 - a. fan-shaped deposits
 - b. apex of cone at point-source canyon
 - (1) point source at mtn front (rock)
 - (2) or down-fan in case of fan entrenchment
 - c. expansion of flow and sediment as exiting canyon
- 3. Terminology
 - a. bajadas-coalesced fans
 - b. alluvial aprons- d.o.
 - c. alluvial slopes- d.o.
- 4. Fan Classification
 - a. dry fans- those created by ephemeral flow
 - b. wet fans-those created by perennial stream flow
 - c. debris fans vs. fluvial fans
- 5. Fan Morphology
 - a. longitudinal gradients
 - (1) steep at head, < down fan
 - b. fan area
 - (1) $A_t = cA_d^n$ where Af = fan area, Ad = area of drainage basin
 - (a) local influences: climate, source, rock, tectonics, depositional space available
 - c. fan nomenclature
 - (1) modern washes
 - (2) abandoned washes

- (3) desert pavements: inactive segments, build-up desert varnish
- (4) fan-head trenches- incision at head of fan, to allow deposition to more distal reaches of fan
 - (a) entrenchment serves to enlarge fans

6. Fan Deposits and Origins

- a. Deposits and Depositinal Processes
 - (1) Debris flows
 - (2) hyperconcentrated flows
 - (3) stream flow
 - (a) all rheologic conditions may occur, and transform during single depositional event.

C. Pediments

- 1. Defined/Characteristics
 - a. erosional surfaces abutting or sloping away from Mtn fronts
 - b. entirely erosional in origin, diverging from regional structure
 - c. commonly surface cut on same rock as comprising mtn.
 - d. may or may not have thin sediment veneer
 - e. common in arid climates
- 2. Morphology and topography
 - a. size and shape: <1 sq. km to > 100's sq. km
 - (1) may be concave or convex up
 - b. surface topography
 - (1) inselbergs- residual bedrock knobs
 - c. piedmont angle-angle between mountain front and pediment
 - d. slope

3. Processes

- a. peidmont association
 - (1) pediment
 - (2) mountain area adjacent
 - (3) related alluvial plain
- b. fluvial flow
- c. weathering processes

II. Deltas

A. Defined

- 1. delta- depositional plain formed at mouth of river, into standing body of water
- 2. fan delta- alluvial fan prograding into standing body of water
 - a. deltas and alluvial fans are somewhat similar in morphology and process
- B. Classification and Morphology
 - 1. High constructive deltas: fluvial dominated
 - a. elongate types
 - b. lobate types
 - 2. High destructive deltas: wave worked delta fronts
 - a. wave dominated deltas
 - b. tide-dominated deltas
 - 3. Morphology
 - a. upper delta plain (fluvial process)
 - b. lower delta plain (fluvial tidal transition)
 - c. subaqueous delta plain (subaqueous processes)
 - 4. gilbert deltas
 - a. foreset: prograding delta front
 - b. topset: bounded by water depth, transport
 - c. bottomset: prodelta muds
- C. Delta Evolution/Dynamics
 - 1. delta front progradation
 - a. delta-lobe switching
 - 2. lobe abandonment
 - a. crevasse splays