## Geog 422/522 Hazards and Resource Management in Alluvial Fan Environments

- I. Water Resources
  - A. Great Basin / Basin and Range Province
    - 1. Unconsolidated alluvial fans represent a principle groundwater resource
      - a. porous and permeable sand-gravel aquifers
        - (1) high porosity (30-40%)
        - (2) high permeability (K range:  $10^{-1}$  to  $10^{-3}$  cm/sec)
      - b. Rapid infiltration / recharge from mountain canyon systems
        - (1) Fans serve and recharge conduit into valley-fill aquifers
    - 2. Nevada Surficial Mapping Project
      - a. Recognizes alluvial fans as important aquifer resources
      - b. mapping project focuses on surficial geology / alluvial fan mapping
  - B. Fan Styles
    - 1. Large-Scale Tectonic-Related Fans
      - a. Important aquifer resources
    - 2. Small-Scale Tributary-Junction Fans
      - a. limited groundwater occurrence
      - b. diamicton-dominated in humid climates
- II. Hazards Management
  - A. Land Development on Fans
  - B. Flood Hazards Assessment
    - 1. Geomorphic Mapping
      - a. Active / Inactive Surfaces
        - (1) soils development
        - (2) paleoflood indicators
        - (3) relative age indicators
      - b. Fan-Head Trenching / Lobe Activity
    - 2. Hydrologic Analysis
      - a. Discharge-Time Series Relationships
        - (1) Recurrence Intervals / Probabilities
  - C. Mountainous Habitated Regions
    - 1. Fans Common
      - a. Tributary Debris-Flow Dominated Fans
      - b. Master Tributary
        - (1) Flood Hazards
      - c. Fan Tributaries
        - (1) Debris Flow Hazards

- 2. Hazards Characteristics
  - a. Fan Channel / Lobe Avulsion
  - b. Debris Flow

## D. Hazard Identification

- 1. Geomorphic Mapping / Fan Classification
  - a. Active vs. Inactive Fan Surfaces
- 2. Debris Flow Indicators
  - a. debris-flow tracks
  - b. paleobotanical indicators
    - (1) tree scars
    - (2) advantitious sprouts
  - c. boulder levees / snouts
  - d. woody debris jams
- E. Example Hazards Classification

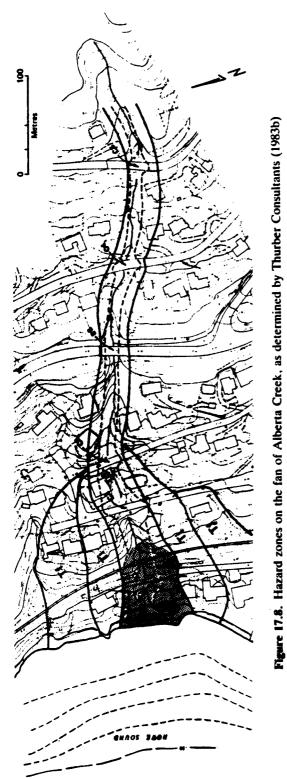



Table 17.2. Fan hazard zone classification\*

| Category | Description                                |
|----------|--------------------------------------------|
| Td       | Direct impact zone of debris flows: zone   |
|          | through which the debris surge             |
|          | may travel. The risk of impact damage      |
|          | is therefore high. Material transported    |
|          | through this zone could include            |
|          | boulders up to several metres in           |
|          | diameter and logs over 30 metres long.     |
| Ti       | Indirect impact zone of debris flows:      |
|          | zone through which later debris surges     |
|          | may be diverted and/or through which       |
|          | after-flow may travel. The risk of         |
|          | impact damage is lower. Material could     |
|          | include large rock and log debris, but is  |
|          | more likely to contain boulders of less    |
|          | than 1 m to fine-grained material and      |
|          | organic mulch.                             |
| Tf       | Flood zone due to debris flows: zone       |
|          | that is exposed to flooding as a result of |
|          | blockage of the main channel by debris-    |
|          | flow deposits. The risk of impact          |
|          | damage is low. Fine-grained material       |
|          | and mulch could be contained in the        |
|          | flood water.                               |
|          | Area of potential deposition of debris:    |
|          | areas within which debris-flow materials   |
|          | could be deposited.                        |
|          | Outline of area directly affected by       |
|          | known previous events: refers to           |
|          | historical events rather than to ones      |
|          | known only from morphology or              |
|          | stratigraphy, and of uncertain date.       |
| Fh       | High flood hazard zone: zone that has a    |
|          | high probability for flooding. In this     |
|          | zone, avulsions are possible.              |
| Fm.      | Moderate flood hazard zone: zone that      |
|          | has a moderate to high probability of      |
|          | flooding. Avulsions could occur but are    |
|          | unlikely.                                  |
| Fm       | Low flood hazard zone: zone that has a     |
|          | moderate to low probability of flooding.   |
|          | but avulsions are unlikely.                |

<sup>\*</sup>Modified from Thurber Consultants (1983b).

ses. The two largest fans were judged to be free from debris-flow hazard but exposed to avulsions and flooding, and were accordingly zoned into F-classes. By implication, the maximum size drainage basin which appears to be susceptible to debris-flow in the Howe Sound study area has an area of about 10 km<sup>2</sup>. There probably are many