Summary Notes: Gerson et al., 1993 Indicators of Faulting Events and Periods of Quiescence in Desert Alluvial Fans

I. Introduction

- A. Study Site
 - 1. Dead Sea Rift
 - 2. Alluvial Fans cut by faults at surface
- B. Purpose
 - 1. methods in examining faults in a geomorphic context
 - 2. Identify stages of faulting
- C. Geologic Setting
 - 1. rift valley /tectonics (Dead Sea, extension of Red Sea)
 - 2. Mean annual precipitation ~30 mm
 - 3. Pleistocene fans on valley marin
 - a. debris flow facies
 - b. hyperconcentrated flow facies

II. Methods

- A. Surficial Mapping (scale: 1:5000)
 - 1. Fan Surface Identification
 - a. elevation
 - b. surficial characteristics
 - (1) soils development
 - (2) pavement development
 - 2. Identification of Fault Scarps
 - a. Fresh vs. Degraded
- B. Fan / Fault Trenching
 - 1. i.d soils, faulted stratigraphy, textural i.d. of sediments
- III. Fault Event Identification Criteria
 - A. Topographic Expression of Faults
 - 1. Features
 - a. Fault Scarps
 - b. Fault Saddles
 - 2. Morphometric measurments
 - a. scarp angles
 - b. scarp height

Basic assumption: the scarp height and angle will decline through time due to diffusive mass wasting processes (cree slope wash, etc.)

B. Soil Development Indices on Fault Scarps

	C.	Displacement of Alluvial Fan Stratigraphy
	D.	Buried Paleosols and Colluvial Sequences along fault scarps 1. Scarps become unstable, associated with slope processes
	E.	Clast Orientation / Slickensides
IV.	Interpr	etations: Phases of Fault Activity
	A.	Basic Principles 1. Offset Stratigraphy a. Cross-cutting relations
		b. Over-lapping relations2. Necessary: method of dating sediment record
	B.	Fault Activity 1. marked by breaks in stratigraphic / sedimentologic record a. poorly developed soils indices indicate activite
	C.	Fault Stability
		 marked by soil development soil weathering indices imply stability
Moral of Story: the key to documenting ancient fault activity requires: dateable deposits OR		
		dateabel geomorphic surfaces

Assumption: Soil Properties Change with Time

>desert varnish

< is salt content

> soil horizonation

With increasing time, arid soils and sediments:

> calcium carbonate content
> silt content (aerosolic influx)

1.

a.

(1)

(2)

(3)

(4)(5)