Blair and McPherson, 1994 Summary Alluvial Fan Processes and Forms

I. Introduction

- A. alluvial fan defined
 - 1. landform developed where channel emerges from mountainous uplands to an adjoining valley
 - a. segment of cone radiating downslope from a point or apex
 - b. plano-convex profile
 - 2. Depositional Process
 - a. fan deposits at mouth of canyons
 - b. loss of power in transporting medium
 - 3. Deposits
 - a. coarse-grained, poorly sorted
 - (1) short transport distance
 - (2) high-relief watersheds / mass-wasting dominated
 - (3) rapid loss of carrying capacity
 - 4. Desert Settings classic study sites
 - a. well-exposed
 - b. ease of access?
- B. Fan Anatomy
 - 1. drainage basin
 - a. steep
 - b. low order
 - 2. feeder channel
 - 3. apex
 - a. mountain front classically
 - 4. incised channel
 - 5. distributary channels
 - 6. depositional lobes
- II. Conditions for Fan Development
 - A. Topographic Setting
 - 1. feeder channel + accommodation space
 - a. Fault-bounded Mountain Fronts
 - b. Tributary Junctions
 - B. Sediment Production in Watershed
 - 1. Weathering Rates
 - 2. Sediment Transport Rates
 - a. Tectonic (relief) / climate dependent
 - C. Meteorological Events / Effective Geomorphic Events

- D. Conditions of Fan Aggradation / Deposition
 - 1. Net Loss of Transport Power on Fan
 - a. lateral flow expansion / loss of channel confinement
 - b. decrease in slope
 - c. loss of discharge / infiltration

III. Primary Processes on Fans

- A. Transport mechanisms
 - 1. Mass Wasting Processes
 - a. fall
 - b. avalanche
 - c. slides
 - d. debris flows
 - (1) slide induced
 - (2) bulking induced ("firehose effect")
 - (3) cohesive vs. non-cohesive debris flows
 - 2. Fluvial Processes
 - a. sheet floods
 - (1) unchannelized flow
 - b. channel floods
- B. Secondary Processes (Fan Reworking)
 - Fluvial Re-working
 - a. rilling / gullying
 - b. slope wash
 - c. sieve processes
 - (1) infiltration / "piping" of fine sediment fractions
 - 2. Aeolian Activity
 - a. deflation
 - b. aerosolic influx
 - 3. Bioturbation
 - 4. Groundwater activity
 - 5. Neotectonics
 - 6. Weathering / Soil Development
 - a. Desert Pavement
- C. Climatic and Tectonic Controls
 - 1. Fan-Head Trenching
 - a. incisement of channels / surface abandonment
 - (1) implies high discharge / erosive activity
 - (a) implication: moist climate / > rainfall (past climates)
 - 2. Climate Influence on Sediment Production
 - a. Weathering Limited vs. Transport Limited Slopes

IV. Controls on Fan Processes

- A. Drainage Basin Bedrock Lithology
 - 1. Resistance to Weathering
 - 2. Grain size controls
 - 3. Fracture patterns / joint controls
 - 4. Process Styles
 - a. Colluvial vs. Alluvial Processes
- B. Drainage Basin Shape and Size
 - 1. Controls fan morphometry
 - 2. Size controls scale of geomorphic process
 - a. large basins = more storage points
 - b. small basins = geomorphically active
 - 3. Drainage Basin Slope
- C. Effects of Neighboring Environments
 - 1. Aeolian, lacustrine, fluvial, volcanic, marine interactions
 - a. control depositional environments
- D. Climatic Effects
 - 1. Climate Influences
 - a. Sediment Production Rates in Watershed
 - (1) vegetation
 - (a) < vegetative cover, > sediment yield
 - (2) rainfall patterns
 - (3) groundwater condition
 - b. Style of Transport Process
 - (1) style of precipitation events
 - (a) intensity-duration-frequency
 - (2) Debris Flow vs. Fluvial Processes
- E. Tectonic Effects
 - 1. Tectonic Accommodation of Fan Sediments
 - a. Classic: fault-bounded basins
 - (1) extensional basins
 - (2) strike-slip basin
 - b. Mountain-Front Morphology
 - c. Earthquake-induced geomorphic events
 - (1) quake-induced landslides
 - 2. Fan Modification
 - a. Fan faulting
 - b. tectonic stream piracy
 - c. fan tilting

- (1) fan segmentation = variable slope segments on fans V. Fan Morphometry Α. Cross-Fan Profiles convex-up 1. B. Longitudinal Fan Profiles fan slope 1. C. Fan Area vs. Drainage Basin Area 1. $A_f = cA_d^n$ fan area > with > drainage area a. b. drainage basin lithology weak / erodible rocks = larger fans (1) D. Fan Gradient vs. Drainage Basin Area 1. general relation: > drainage area, < slope of fan
- VI. Classification of Fans
 - A. climate classification
 - 1. "wet" vs. "dry" fan
 - 2. "humid" vs. "arid" fan
 - B. Process classification
 - 1. fluvial vs. debris flow fans
 - a. fluvial vs. colluvial fans
- VII. Fan Evolution (over time)
 - A. Incipient Stage
 - 1. talus cones
 - 2. simple fans
 - B. Composite Fans
 - 1. complex lobe shifting / surface abandoment
 - C. Fan Progradation
 - 1. distal fan progradation vs. proximal fan restriction
 - a. tectonic subsidence / basin-fill models
 - (1) slow subsidence = prograding fans
 - (2) rapid subsidence = proximal fan deposition (restricted)
 - 2. channel vs. sheetflood fans