CHAPTER 3

PATTERN DETECTORS

The descriptive spatial statistics introduced in the previous chapter are useful in
summarizing point distributions and in making comparisons between point distri-
butions with similar attributes. But the use of these descriptive statistics is only
the first step in geographic analysis. The next step is to analyze a point distribu-
tion to see if there is any recognizable pattern. This step requires additional tools,
such as those to be discussed in this chapter.

Every point distribution is the result of some processes at a given point in time
and space. To fully understand the various states and the dynamics of particular
geographic phenomena, analysts need to be able to detect spatial patterns from
the point distributions. This is because successful formulation or structuring of
spatial processes often depends to a great extent on the ability to detect changes
between point patterns at different times or changes between point patterns with
similar characteristics. The recognition and measurement of patterns from point
distributions is therefore a very important step in analyzing geographic informa-
tion.

In considering how cities distribute over a region, one can easily find situa-
tions in which cities distribute unevenly over space. This is because the landscape,
transportation network, natural resources, and possibly many other factors might
have influenced the decision to choose different locations for the settlements to
start with and the different growth rates these settlements might have had after-
ward.

At a global or continental scale, cities are often represented as points on a map.
At a local scale, incidences of disease or crime in a city or incidences of fire ina
forest may be plotted similarly. When studying point distributions such as these,
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analysts may try to relate them to particular patterns based on their experience or
knowledge generated from previous studies, particularly studies that have devel-
oped theories and models. One example is to examine how cities distribute in a
region, resembling the theoretical pattern (hexagonal pattern) of city distribution
under the Central Place Theory. To do so, analysts would need tools that do more
than summarize the statistical properties of point distributions.

The techniques that we discuss in this chapter, although having limitations, are
useful in detecting spatial patterns in point distributions (Getis and Boots, 1988).
We will first introduce Quadrat Analysis, which allows analysts to determine if
a point distribution is similar to a random pattern. Next, the nearest neighbor
analysis compares the average distance between nearest neighbors in a point dis-
tribution to that of a theoretical pattern (quite often a random pattern). Finally, the
spatial autocorrelation coefficient measures how similar or dissimilar an attribute
of neighboring points is.

3.1 SCALE, EXTENT, AND PROJECTION

The methods to be discussed in this chapter are used mainly to detect or measure
spatial patterns for point distributions. It is necessary to pay special attention to
three critical issues when using these methods.

First, we need to choose a proper geographic scale to work with when using
points to represent some geographic objects. This is because geographic objects
may be represented differently at different scales, depending on how they are
treated. Whether to hold the scale constant in a study of certain geographic objects
or to allow the scale to be changed is a rather important issue to consider when
working with sets of points scattering over space.

As pointed out earlier, cities are often represented by points at a global or
continental scale. The City of Cleveland, for example, appears to be only a point
when a map shows it with other major cities in the United States. The same city,
however, becomes a polygonal object that occupies an entire sheet of map when
a larger-scale map shows the city with all its streets, rivers, and other details.
Similarly, a river may be represented in a small-scale map as a linear feature, but
it is an ecosystem if an analyst’s focus is on its water, riverbeds, banks, and all of
its biological aspects.

The second issue is the extent of geographic areas in the study. Analysts often
need to determine to what extent the areas surrounding the geographic objects of
interest are to be included in their analysis. Let’s assume that we are working on
a study that examines intercity activities including Akron, Cincinnati, Cleveland,
Columbus, and Dayton in Ohio. When only the geographic extent of the state of
Ohio is used, the five cities seem to scatter quite far apart from each other, as
shown in Figure 3.1. However, these five cities would seem to be very closely
clustered if we define the entire United States to be the study area with respect to
them. To increase this difference further, the five cities essentially cluster nearly
at one location if they are considered from the perspective of the entire world.
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Figure 3.1 Comparative clusterness.

Delimiting the study area properly for a project is never easy. There are cases
in which political boundaries are appropriate choices, but there are also cases in
which they are not. While no single, simple solution can be offered for all cases,
analysts are urged to consider this issue carefully.

The last issue is the projection used in maps when displaying the distribution
of geographic objects. Four possible distortions may be caused by different pro-
jections: area, shape, direction and distance. Among the more than 20 different
projections that can be applied in mapping, there is no projection that can per-
fectly transform geographic locations from their locations on the globe (a three-
dimensional space) to a map (a two-dimensional plane). Therefore, we will need
to be sensitive to the needs of the project or study at hand. Careful consideration
of the purposes, scales, and accuracy of data is needed for a successful study.

In detecting point patterns, it is important to consider the impact of different
projections. This is because both area and distance are used intensively in the
analysis of point patterns. In Quadrat Analysis, the size of the study area affects
the density of points. In the nearest neighbor analysis and the spatial autocorrela-
tion coefficient, distances between points play a critical role in the calculation of
these two indices.

Not surprisingly, the larger the study area, the more significant the impact of
different projections will be. If the study area is small, such as a residential neigh-
borhood or a small village/city the different areal and distance measurements by
different projections may not matter. However, studies that encompass the entire
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United States or the world have to pay special attention to selecting proper pro-
jections to work with.

Equal-Distance Projection

Equal-Area Projection Un-Projected
Figure 3.2a Examples of distortions caused by changing projections.
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Un-Projected State Plane Projection UTM Projection
Figure 3.2b Examples of distortions caused by changing projections.

3.2 QUADRAT ANALYSIS

The first method for detecting spatial patterns from a point distribution is Quadrar
Analysis. This method evaluates a point distribution by examining how its density
changes over space. The density, as measured by Quadrat Analysis, is then com-
pared with usually, but not necessarily a theoretically constructed random pattern
to see if the point distribution in question is more clustered or more dispersed than
the random pattern.

The concept and procedures of Quadrat Analysis are relatively straightforward.
First, the study area is overlain with a regular square grid, and the number of
points falling in each of the squares are counted. Some squares will contain none
of the points, but other squares will contain one, two, or more points. With all
squares counted, a frequency distribution of the number squares with given num-
ber of points can be constructed. Quadrat Analysis compares this frequency dis-
tribution with that of a known pattern, such as a theoretically random pattern.

The squares are referred to as quadrats, but quadrats do not always need to be
squares. Analysts can use other geometric forms, such as circles or hexagons, as
appropriate for the geographic phenomenon being studied. The selection among
various forms of quadrats should be based on previous successful experience or
the characteristics of the phenomenon in question. In addition, within each anal-
ysis, the shape and size of the quadrats have to be constant.

In comsidering an extremely clustered point pattern, one would expect all or
most of the points to fall inside one or a very few squares. On the other hand, in
an extremely dispersed pattern, sometimes referred to as a uniform pattern, one
would expect all squares to contain relatively similar numbers of points. As a
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Clustered Pattern Observed Pattern Disperse Pattern

Figure 3.3 Ohio cities with hypothetical clustered and cispersed patterns.

result, analysts can determine if the point distribution under study is closer to a
clustered, random, or dispersed pattern. As examples of clustered and dispersed
patterns, Figure 3.3 shows the 164 cities in the state of Ohio, along with hypothet-
ical clustered and dispersed patterns with the same number of points.

Overlaying the study area with a regular grid partitions the study area .in a
systematic manner to avoid over- or undersampling of the points anywhere. Since
Quadrat Analysis evaluates changes in density over space, it is important to keep
the sampling interval uniform across the study area. There is, however, another
way to achieve the same effect. This involves randomly placing quadrat.s of.a
fixed size over the study area (Figure 3.4). Statistically, Quadrat Analysis will
achieve a fair evaluation of the density across the study area if it applies a large
enough number of randomly generated quadrats.

The last issue that needs careful consideration when applying Quadrat Analysis
is the size of quadrats. According to the Greig-Smith experiment (Greig-Smith,
1952) and the subsequent discussion by Taylor (1977, pp- 146-147) and Griffith
and Amrhein (1991, p. 131), an optimal quadrat size can be calculated as follows:

; 2-A
Quadrat size = o
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Complete Coverage with
Regular Grid

Figure 3.4 Quadrat analysis: complete coverage by grids and random quadrats.

where A is the area of the study area and 7 is the number of points in the distribu-
tion. This suggests that an appropriate square size has a width of /2 - A /n.

Once the quadrat size for a point distribution is determined, Quadrat Analysis
can proceed to establish the frequency distribution of the number of points in each
quadrat, using either complete coverage (with a regular square grid or a hexagon
grid) or randomly generated quadrats. This frequency distribution needs to be
compared to a frequency distribution describing a random point pattern.

A statistical test known as the Kolmogorov-Simirnov test (or simply the K-S
test), can be used to test the difference statistically between an observed frequency
distribution and a theoretical frequency distribution. This test is a simple, straight-
forward test, both conceptually and computationally.

As an example, let’s take the 164 Ohio cities and use 80 squares to construct
the frequency distribution for Quadrat Analysis. The frequency distribution of the
cities falling into squares is listed in Table 3.1. In this table, the left-hand column
lists the number of cities in each square. The second column shows that there
are 36 squares with no city ‘at all, 17 squares with only one city, 10 squares with
two cities, and so on. For an example of a uniform/dispersed pattern, the third
column lists frequencies that are made up to approximate an even distribution of
cities across all squares. The right-hand column indicates that all cities are located
within one square.

By observing the differences among the three frequency distribution columns,
it is clear that the observed pattern is more clustered than the dispersed pattern.
But it is not as clustered as that of the right-hand column. While the differences
among the columns can be visually estimated, we need some way of measuring
the difference quantitatively. At this stage of our analysis, we can apply the K-S
test.

The K-S test allows us to test a pair of frequency distributions at a time. Let’s
take the observed pattern and the dispersed pattern to start with. First, we assume
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TABLE 3.1 Frequency Distribution: 164 Ohio Cities with Three Hypothetical
Frequency Distributions

Number of Cities
in Each Square Observed Pattern Uniform/Dispersed Clustered

0 36 0 79

1 17 26 0

2 10 26 0

3 3 26 0

4 2 2 0

5 2 0 0

6 1 0 0

7 1 0 0

8 1 0 0

9 1 0 0

10 1 : 0 0

11 1 i 0 0

12 1 0 0

13 1 0 0

14 1 0 0

28 1 0 0

164 0 0 1

that the two frequency distributions are similar enough that we cannot detect dif-
ferences between them that are statistically significant. This concept is slightly
confusing for those who have not had much experience with statistical analysis,
but it is simply making an assumption that allows a small degree of difference
to be acceptable. If the difference between two frequency distributions is indeed
very small, then the difference might have happened simply by chance. The larger
the difference, the less likely that it occurred by chance.
The test is as follows:

1. Assume that there is no statistically significant difference between two fre-
quency distributions.

2. Decide on a level of statistical significance—for example, allowing only 5
out of 100 times (@ = 0.05).

3. Convert all frequencies to cumulative proportions in both distributions.

4. Calculate the D statistic for the K-S test:
= maxIO;- = E,‘I,

where O; and E; are cumulative proportions of the ith category in the two
distributions. The max || term indicates that we do not care which one is
larger than the other; we are concerned only with their difference. D is then
the maximum of the absolute differences among all pairwise comparisons.
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5. Calculate a critical value as the basis for comparison:

Jre1036
Dy—pp5 = —

i

where m is the number of quadrats (or observations).

In a 2-sample case,
m|+m
Dy—pos = 1.361.%1——2
mima

where m1 and m; are numbers of quadrats in the 2 groups.

6. If the calculated D is greater than the critical value of Dy—ggs, we will
conclude that the two distributions are significantly different in a statistical
sense.

Taking the example of the 164 Ohio cities, Table 3.2 lists the frequencies and
their converted proportions. The right-hand column lists the absolute differences
between the two columns of cumulative proportions. The largest absolute differ-
ence, in this case, is 0.45. Therefore, D = max |0; — E;| = 0.45.

Because this is a 2-sample case, the critical value D(a = 0.05) can be calcu-
lated as follows:

80 + 80
D(x =0.05) =1.36 TP =0:215.
TABLE 3.2 D Statistics for K-S Test
Number of Cumulative Cumulative
Cities in Observed Observed Dispersed Pattern ~ Absolute
Each Square Pattern Proportions Pattern Proportions Difference
0 36 0.45 0 0 0.45
1 17 0.66 26 0.325 0.34
2 10 : 0.79 26 0.65 0.14
3 3 0.83 26 0.975 0.15
4 2 0.85 2 1 0.15
35 2 0.88 0 1 0.13
6 1 0.89 0 1 0.11
7 1 0.90 0 1 0.10
8 1 0.91 0 1 0.09
9 1 0.93 0 1 0.08
10 1 0.94 0 1 0.06
11 1 0.95 0 1 0.05
12 1 0.96 0 1 0.04
13 1 0.98 0 1 0.03
14 1 0.99 0 1 0.01
28 1 1 0 1 0
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The critical value of 0.215 is apparently far smaller than 0.45, indicating that
the difference between two frequency distributions is statistically significant at
the o = 0.05 level. With this, we can easily reject our initial hypothesis that there
is no significant difference between a dispersed pattern of 164 points and the
distribution formed by the 164 Ohio cities. In other words, the 164 Ohio cities do
not distribute in a dispersed manner.

In the above example, we examined the difference between an observed point
pattern and a dispersed pattern. However, it is more common to compare an ob-
served point pattern to a peint pattern generated by a random process. A well-
documented process for generating a random point pattern is the Poisson process.
The Poisson random process is appropriate to generate count data or frequency
distributions. Quadrat Analysis often compares an observed point pattern fre-
quency distribution to a frequency distribution generated by the Poisson random
process.

A Poisson distribution is strongly determined by the average number of occur-
rences, A. In the context of Quadrat Analysis, A is defined as the average number
of points in a quadrat. Assume that we have m quadrats and » points in the entire
study area, A = n/m, the average number of points in a quadrat. Let x be the
number of points in a quadrat. Using the Poisson distribution, the probability of
having x points in a quadrat is defined as

A x

R
plx)= ——
x!

where e is the Euler’s 2.71828 constant and x! is the factorial of x, which can be
defined as x(x —1)(x —2) ... (1) and 0!, by definition, is 1. Using the probabilities
for various values of x based upon the Poission distribution, we can generate a
frequency distribution in the same format as those shown in Table 3.1 but for a
random point distribution.

Generating a probability value from a Poisson distribution is rather simple. But
if a set of probabilities for a range of x values is required, it becomes quite tedious,
as the factorial and the e function have to be applied every time. Fortunately, there
is a shortcut that can be used to generate a set of probabilities based upon the
Poisson distribution. We know that if x = 0, the Poisson probability is reduced to

p0) = e

Other probabilities can be derived based upon p(0). In general,

A
p(x) =plx—1)%—.
X

If x is 1, then p(x — 1) = p(0). Using this shortcut formula, it would be efficient
to derive an entire set of Poisson probabilities.

In the Ohio example, there are 164 points (cities) and 80 quadrats were used in
the previous example. Therefore, A = 164/80 = 2.05. Using this X value, a set of
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TABLE 3.3 Comparing the 164 Ohio Cities to a Random Pattern Generated by a
Poisson Process

Number of Cumulative Cumulative
Citiesin  Observed Observed Observed Poisson Poisson
Each Square  Pattern ~ Probability Probability Probability Probability Difference

0 36 0.45 0.4500 0.1287 0.1287 0.3213

1 17 0.2125 0.5514 0.2639 0.3926 0.2699

2 10 0.1125 0.7875 0.2705 0.6631 0.1244

3 3 0.0375 0.8250 0.1848 0.8480 0.0230

4 2 0.025 0.8500 0.0947 0.9427 0.0927

5 2 0.025 0.8750 0.0388 0.9816 0.1066

6 1 0.0125 0.8875 0.0133 0.9948 0.1073

7 i 0.0125 0.9000 0.0039 0.9987 0.0987

8 1 0.0125 0.9125 0.0010 0.9997 0.0872

9 1 0.0125 0.9241 0.0002 0.9999 0.0759

10 1 0.0125 0.9375 0.0000 1 0.0625

11 1 0.0125 0.9500 0.0000 1 0.0500

12 1 0.0125 0.9625 0.0000 1 0.0375

13 1 0.0125 0.9750 0.0000 1 0.0250

14 1 0.0125 0.9875 0.0000 1 0.0125

28 1 0.0125 1 0.0000 1 0.0000

Poisson probabilities can be derived using the shortcut formula. Table 3.3 shows
the derivations of the probabilities. The first two columns in the table are identical
to those in Table 3.1. The third and fourth columns are the observed probabilities
and the cumulative probabilities based upon the observed pattern. In the fifth col-
umn, a Poisson distribution was generated based upon A = 2.05. This probability
distribution indicates the probability that a quadrat may receive different numbers
of points. The cumulative probabilities of the Poisson distribution are also derived
in the sixth column. The last column reports the absolute differences between the
two sets of cumulative probabilities. The largest of these differences is the K-S
D statistic, which is 0.321!3, much greater than the critical value of 0.1520 using
the 0.05 level of significance.

If the observed pattern is compared to a random pattern generated by a Poisson
process, we can exploit a statistical property of the Poisson distribution to test the
difference between the observed pattern and the random pattern in addition to the
K-S statistic. This additional test is based upon the variance and mean statistics
of a Poisson distribution.

We know that A is the mean of a Poisson distribution. A very interesting and
useful property of a Poisson distribution is that the variance is also A. In other
words, if a distribution potentially is generated by a random process like the Pois-
son process, the distribution should have the same mean and variance. If the mean
and variance form a ratio, the variance-mean ratio, the ratio should be very close
to 1. Therefore, given an observed point pattern and the frequency distribution of
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points by quadrats, we can compare the observed variance-mean ratio to 1 to see if
they are significantly different. Given the information similar to that in Table 3.1,
the mean of the observed distribution is A = 2.05. The variance is basically a vari-
ance for grouped data. The mean A has to be compared with the number of points
in each quadrat. The difference is then squared and multiplied by the quadrat
frequencies. The sum of these products divided by the number of quadrats pro-
duces the observed variance. Using the observed variance and A, we can form a
variance-mean ratio. This ratio is then compared to 1, and the difference has to be
standardized by the standard error in order to determine if the standardized score
of the difference is larger than the critical value (quite often 1.96 at the 0.05 level
of significance).

The K-S test and the variance-mean ratio may yield inconsistent results. But
because the K-S test is based upon weak-ordered data (Taylor, 1977) while
variance-mean ratio is based upon an interval scale, the variance-mean ratio tends
to be a stronger test. However, variafice-mean ratio test can be used only if a
Poisson process is expected.

Quadrat Analysis is useful in comparing an observed point pattern with a ran-
dom pattern. Theoretically, we can compare the observed pattern with any pattern
of known characteristics. For instance, after we compare the observed pattern with
a random pattern and the result indicates that they are significantly different, the
next logical step is to test if the observed pattern is similar to a clustering pat-
tern or a dispersed pattern. Quite often, through visual inspection, the analyst can
hypothesize what pattern the observed pattern resembles. Using other statistical
distributions, such as the negative gamma or the negative binomial, we can gener-
ate point patterns with specific distribution properties. These patterns can then be
compared with the observed pattern to see if they are different. Quadrat Analysis,
however, suffers from certain limitations. The analysis captures information on
points within the quadrats, but no information on points between quadrats is used
in the analysis. As a result, Quadrat Analysis may be insufficient to distinguish
between certain point patterns. Figure 3.5 is an example.

In Figures 3.5a and 3.5b, both spatial configurations have eight points with
four quadrats. Visually, the two point patterns are different. Figure 3.5a is a more
dispersed pattern, while Figure 3.5b is definitely a cluster pattern. Using quadrat
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Figure 3.5 Local clusters with regional dispersion.
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analysis, however, the two patterns yield the same result. In order to distinguish
patterns depicted in Figure 3.5, we have to use Nearest Neighbor Analysis.
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Figure 3.6 Quadrat analysis of 164 Ohio cities with a 9 by 9 grid.
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37.3 NEAREST NEIGHBOR ANALYSIS

Quadrat Analysis tests a point distribution with the points per area (density) con-
cept. The method to be discussed in this section, the Nearest Neighbor Analysis,
uses the opposite concept of area per point (spacing). Quadrat Analysis examines
how densities in a point distribution change over space so that the point pattern
can be compared with a theoretically constructed random pattern. For the Nearest
Neighbor Analysis, the test is based on comparing the observed average distances
between nearest neighboring points and those of a known pattern. If the observed
average distance is greater than that of a random pattern, we can say that the ob-
served point pattern is more dispersed than a random pattern. Similarly, a point
pattern is said to be more clustered if its observed average distance between near-
est neighbors is less than that of a random pattern.

In a homogeneous region, the most uniform pattern formed by a set of points
occurs when this region is partitioned into a set of hexagons of identical size and
each hexagon has a point at its center (i.e., a triangular lattice). With this setup,
the distance between points will be 1.075.,/A/n, where A is the area of the region
of concern and n is the nu\mber of points. This provides a good starting point for
us to understand how the Nearest Neighbor Analysis works.

In the real world, we rarely see geographic objects distributing in an organized
manner such as being partitioned by hexagons of equal size. However, we often
see geographic objects, such as population settlements, animal/plant communi-
ties, or others distribute in a more irregular fashion. To test if any distribution had
any recognizable patterns, let’s use a statistic call R, named for randomness.

The R statistic, sometimes called the R scale, is the ratio of the observed av-
erage distance between nearest neighbors of a point distribution and the expected
distance of the average nearest neighbor of the region of concern. It can be calcu-
lated as follows:

R Fobs

»
Texp
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where rops is the observed average distance between nearest neighbors and rexp
is the expected average distance between nearest neighbors as determined by the
theoretical pattern being tested.

To measure the observed average distance between nearest neighbors, we can
calculate the distance between each point and all of its neighbor points. The short-
est distance among these neighbors will be associated with the nearest point.
When this process is repeated for all points, a table such as Table 3.4 can be
calculated. The points in Table 3.4 are based on the distribution shown in Fig-
ure 3.7. For this set of 17 cities, the observed average distance between pairs of
nearest neighbors is rops = 6.35 miles.

For the theoretical random pattern, let’s use the following equation to calculate
the expected average distance between nearest neighbors:

1

Texp =. A
i e W s

where the » is the number of points in the distribution and the A is the area of
the space of concern. In our example, the area of the five counties is 3,728 square
miles. Therefore, the expected average distance is

1
Fy e
T A EREe

TABLE 3.4 Observed Distances Between Nearest Neighbor Cities in the
Five-County Area of Northeastern Ohio

City Name Nearest City Nearest Distance
Akron Tallmadge 587
Alliance North Canton 14.96
Barberton Norton 2.39
Brunswick Medina 7.93
Canton North Canton 4.40
Cuyahoga Falls Stow 4.52
Kent Stow 4.36
Massillon Canton 7.90
Medina Brunswick 7.93
North Canton Canton 4.40
Norton Barberton 239
Portage Lakes Barberton 4.00
Ravenna Kent 6.32
Stow Cuyahoga Falls 452
Tallmadge Kent 4.38
Wadsworth Norton 4.52
Wooster Wadsworth 17.64
Average nearest distance 6.35 (miles)
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Figure 3.7 Cities in the five-county area of northeastern Ohio region.

With both distances calculated, we can now compute the R statistic:

Fobs . 6—‘3_(5) —0.8581.

Texp

With this R scale, we know that the point pattern formed by the 17 cities is more
clustered than a random pattern. i

Now we know how the R statistic is calculated and how to determine if a _pat-
tern is more clustered or more dispersed than a random pattern. Many conclusions
can be drawn from this calculation with regard to how the 17 cities relate to each
other. But we are still not sure to what degree this pattern is more clustered than
a random pattern. Is it much more clustered or just slight.ly_mor_e clustered? To
appreciate the implications of various values of the R statistic, Figure 3.8 shows
a series of hypothetical distributions and their associated R vz-ilues. ;

Figure 3.8 shows that the more clustered patterns are assocmtefi with s.maller R
values (rops < Texp) While the more dispersed patterns are associated with larger

l 1 R=0.51 R=0.94: R=1.48 R=1.81 R=1.80

s (i ) >

;
— ingly Clustorsd i gly dispersed
1

Figure 3.8 The scale of R statistics.
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R values (robs > rexp). Figure 3.8 is useful for establishing a general concept of
how R values relate to various patterns. It is, however, not sufficient to measure
quantitatively the difference between an observed pattern and a random pattern.

The R scale ranges from R = 0 (completely clustéred) to R = 1 (random) to
R = 2.149 (completely dispersed). When R = 0, all distances between points
are zero, indicating that all points are found at the same location. When R =
1, robs = Texp; the pattern being tested should therefore be a random pattern.
When R approximates values or 2 or more, the pattern displays various degrees
of dispersion.

When using Nearest Neighbor Analysis, one way to measure the extent to
which the observed average distance differs from the expected average distance
is to compare this difference with its standard error (SE,). The standard error
describes the likelihood that any differences occur purely by chance. If the cal-
culated difference is relatively small when compared to its standard error, we say
that this difference is not statistically significant. By contrast, when we have a
difference that is relatively large with respect to its standard error, we claim that
the difference is statistically significant; that is, it does not occur by chance.

The concept of standard error is rooted in classical statistical theories. In a
normal distribution, there is about a 68% chance that some differences between
one negative standard error and one positive standard error will occur by chance
when in fact there should not be any difference between two populations being
compared. Described in equation, this means that:

Probability(< 68%) = (—1SE,, +15E;).

Following this, we can define a calculated difference to be statistically significant
only when it is smaller than —1SE, or greater than +1SEE,.. Or, if we want to be
more rigid, we would call a difference statistically significant only if it is smaller
than —1.96SEE, or greater than 1.96SEE,. This is because the probability of
having a difference of that magnitude is 5 out of 100 times or less:

Probability (< 95%) = (—1.965E,, +1.965E,).

To calculate the standard error for the observed distances, we can use the follow-
ing equation:

26136
E :026

oy o s i

\/RZ/A!

where n and A are as defined previously. With this standard error, we can now see
how the difference is compared with it by calculating a standardized Z score:

Fobs — Texp

Zp =
a SE,
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As mentioned earlier, if Zg > 1.96 or Zp < —1.96, we conclude that the cal-
culated difference between the observed pattern and the random pattern is sta-
tistically significant. Alternatively, if —1.96 < Zp < 1.96, we conclude that the
observed pattern, although it may look somewhat clustered or somewhat dispersed
visually, is not significantly different from a random pattern.

In our example of 17 Ohio cities, we have

0.26136
SE, =-——"c_ —10.9387.

V17%/3728

And the Zp score is

6.35—74  —1.05

= =-1.12
0.9387- 0.9387 W2

R =

meaning that it is not statistically different from a random pattern. ?

As demonstrated above, a point pattern may seem clustered or dispersed by
visual inspection or even described by calculating its R value. However, we will
not be able to reach a conclusion unless a statistical test confirms or rejects this
conclusion. In other words, the calculated R value should be confirmed by Zp
scoring to ensure its statistical significance.

Please note that in the Ohio example, Z, is negative, indicating that the nearest
neighbor distance of the observed pattern is smaller than expected but insignifi-
cant. The sign of the z-score, however, indicates that the observed pattern has a
clustering tendency. In other words, if the z-score indicates that the difference
between the observed and expected nearest neighbor distances is statistically sig-
nificant, the sign of the statistic can show if the observed pattern is probably clus-
tered or dispersed. Following the logic of hypothesis testing, we can conduct a
one-tailed test to see if the z-score is really negative (smaller than —1.645 at the
0.05 significance level) or really positive (greater than 1.645). These tests ulti-
mately can provide a conclusion if the observed pattern is significantly different
from a clustering pattern or a dispersed pattern.

With its ability to detect patterns in a point distribution, Nearest Neighbor
Analysis has been extended to accommodate second, third, and higher order
neighborhood definitions. When two points are not immediate nearest neigh-
bors but are the second nearest neighbors, the way distances between them are
computed will need to be adjusted accordingly. The extension is straightforward
in concept and has been used on special occasions when this relationship is
important.

For instance, using the first order nearest neighbor statistic, we cannot distin-
guish the two point patterns shown in Figure 3.5a and Figure 3.5b because the
nearest neighbors of each point in both patterns are very close. But if the sec-
ond order nearest neighbors are used in the analysis, the result will show that
Figure 3.5a has a dispersed pattern because the second nearest neighbors are all
far away in other quadrats. On the other hand, the result for Figure 3.5b will
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indicate a clustering pattern because all second nearest neighbors are still quite
close. By combining the results of the first order and second order nearest neigh-
bor analyses, we can conclude that Figure 3.5a has a local clustering but regional
dispersed pattern, while Figure 3.5b has a clustering pattern on both local and re-
gional scales. To a large extent, using different orders of nearest neighbor statistics
can detect spatially heterogeneous processes at different spatial scales.

Finally, it should be noted that Nearest Neighbor Analysis has certain prob-
lems. When it is used to examine a point distribution, the results are highly sen-
sitive td the geographic scale and the delineation of the study area. A set of cities
may be considered very disperse if they are examined at a local scale. These same
cities may seem extremely clustered if they are viewed at a continental or global
scale. The 17 Ohio cities may seem quite dispersed if we use only the five coun-
ties as the study area. However, they are considered to be very clustered if they
are plotted on a map that shows the entire United States.

Understanding the limitations of Nearest Neighbor Analysis, we should al-
ways be careful to choose an appropriate geographic scale to properly display the
geographic objects we study. Furthermore, the delineation of study areas should
be justified by meaningful criteria. In many cases political boundaries may make
sense, but other situations may require boundaries defined by natural barriers such
as coastlines, rivers, or mountain ranges.
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3.4 SPATIAL AUTOCORRELATION

In detecting spatial patterns of a point distribution, both Quadrat Analysis and
Nearest Neighbor Analysis treat all points in the distribution as if they are all
the same. These two methods analyze only the locations of points; they do not
distinguish points by their attributes.

In this section, we will discuss a method for detecting spatial patterns of a point
distribution by considering both the locations of the points and their attributes.
This method uses a measure known as the spatial autocorrelation coefficient to
measure and test how clustered/dispersed points are in space with respect to their
attribute values. This medsure is considered to be more powerful and more useful
than the two methods discussed previously in certain ways. Different geographic
locations rarely have identical characteristics, making it necessary to consider
the characteristics of points in addition to their locations. Not only do locations
matter; the conditions of these locations or activities happemng there are also of
great importance.

Spatial autocorrelation of a set of points is concerned with the degree to which
points or things happening at these points are similar to other points or phenom-
ena happening there. If significantly positive spatial autocorrelation exists in a
point distribution, points with similar characteristics tend to be near each other.
Alternatively, if spatial autocorrelation is weak or nonexistent, adjacent points in
a distribution tend to have different characteristics. This concept corresponds to
what was once called the first law of geography (Tobler, 1970): everything is re-
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lated to everything else, but near things are more related than distant things (also
cited and discussed in Gould, 1970, pp. 443-444; Cliff and Ord, 1981, p. 8; and
Goodchild, 1986, p. 3).

With the spatial autocorrelation coefficient, we can measure

1. The proximity of locations and
2. The similarity of the characteristics of these locations.

For proximity of locations, we calculate the distance between points. For sim-
ilarity of the characteristics of these locations, we calculate the difference in the
attributes of spatially adjacent points.

There are two popular indices for measuring spatial autocorrelation in a point
distribution: Geary’s Ratio and Moran’s I. Both indices measure spatial autocorre-
lation for interval or ratio attribute data. Following the notation used in Goodchild
(1986, p. 13), we have’ e

c;j representing the similarity of point i’s and point j’s attributes,

wj representing the proximity of point i’s and point j’s locations, with w;; =
0 for all points,

x; represents the value of the attribute of interest for point 7, and

n represents the number of points in the point distribution.

For measuring spatial autocorrelation, both Geary’s Ratio and Moran’s I com-
bine the two measures for attribute similarity and location proximity into a single
index of 3"/ 3__; cijwi;. It is used as the basis for formulating both indices.
In both cases, the spat1a1 autocorrelation coefficient (SAC) is proportional to the
weighted similarity of attributes of points. Specifically, the equation for spatial
autocorrelation coefficient takes the general form

i1 2 j=1 CijWij
D1 X Wi

In the case of Geary’s Ratio for spatial autocorrelation, the similarity of at-
tribute values between two points is calculated as

SAC =

2
cij = (x; — x;5).

The difference in attribute values for point i and point j is calculated as (x; —x;).
These differences for all pairs of i and j are then squared before being summed
so that positive differences will not be offset by negative differences. Specifically,
Geary’s Ratio is calculated as follows:

Yoty M X 1ww(1w—xf')2
23 e 2= wijo? 2y Y wyet

=
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where o2 is the variance of the attribute x values with a mean of X or

0,2 I Z?:](xi o f)z
2T

In the case of Moran’s I, the similarity of attribute values is defined as the
difference between each value and the mean of all attribute values in question.
Specifically, for Moran’s 1,

cij = (xi —X)(xj —X)

and the index can be calculated as

Dot Djm1 WijGij Yoy 2=y Wij(m — D)xj = %)
2 iy Xt Wi :

P =
5230 X Wi

where s? is the sample variance or

2 Yo — x)*

3 =
n

In Geary’s Ratio and Moran’s I, all terms can be calculated directly from the
attribute values of the points. The only item not yet defined is w;;, which is the
proximity of locations between point i and point j. We often use the inverse of
the distance between point i and point j. This assumes that attribute values of
points follow the first law of geography. With the inverse of the distance, we give
smaller weights to points that are far apart and larger weights to points that are
closer together. For example, w; j can be defined as 1/d;;, where d; is the distance
between point / and point j.

The two indices are similar in format. The difference between them is whether
the differences in attribute values (x; and x j) are calculated directly (x; — x;)
or via their mean (x; — X)(x; — X). As a result, the two indices yield different
numeric ranges, as shown in Table 3.5. In Table 3.5, possible values for hoth

TABLE 3.5 Numeric Scales for Geary’s Index and Moran’s Index

Spatial Patterns Geary’s C Moran’s I

Clustered pattern in which adjacent points 0. <C =l I = EtI)
show similar characteristics

Random pattern in which points do not show C.~~ 1 I ~=E(I)
particular patterns of similarity

Dispersed/uniform pattern in which adjacent < C<2 I <E(

points show different characteristics

E(I) = (—=1)/(n — 1), with n denoting the number of points in the distribution.
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indices are listed with respect to three possible spatial patterns: clustered, random,
and dispersed. Note that neither index’s scale corresponds to our conventional
impression of correlation coefficient of (—1, 1) scale.

For Geary’s Ratio, a value of 1 approximates the random pattern, whereas
values greater than 1 suggest a dispersed or uniform pattern that has adjacent
points displaying different characteristics. For Geary’s Ratio, a value of less than
1 suggests a clustered pattern in which adjacent points show similar attribute val-
ues.

The numeric scale of Moran’s I is anchored at the expected value of E(J) =
—1/n — 1 for a random pattern. Index values that are less than E (I) are typically
associated with a uniform/dispersed pattern. At the other end of the scale, in-
dex values greater than E([) typically indicate clustered patterns where adjacent
points tend to have similar characteristics.

When analyzing a point distribution, if we assume that the way the attribute
values are assigned to the points is ofily one of the many possible arrangements
using the same set of values, we adopt the assumption known as randomization,
or nonfree sampling. Alternatively, we may assume that the attribute values in
a set of points are only one of an infinite number of possibilities; each value is
independent of others in the set of points. This assumption is sometimes called
the normality or free sampling assumption. The difference between these two
assumptions affects the way the variances of Geary’s Ratio and Moran’s I are
estimated.

For both indices, we can calculate variances under free sampling and non-
free sampling assumptions. Free sampling allows replacements of observations in
sampling possible outcomes, while nonfree sampling does not allow replacement.

Let’s use R for the nonfree sampling assumption (randomization) and N for
the free sampling assumption (normality). Following Goodchild (1986), we can
estimate the expected values for a random pattern and the variances for Geary’s
C by

Ey(CO)=1
Ep(C)=1
_ 2514+ $)(n — 1) — 4W?)
L 2+ HW?
i 2ty e
VARR(C) = n—1)8][n 3n4+3—(n— k]

n(n —2)(n —3)W?2
_ (n=1)85[n%+3n—6 — (n* —n +2)k]
dn(n — 2)(n — 3)W?
W2[n? —3 — (n — 1)%]
n(n —2)(n — 3)W?2

3
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where

. o Z?:1(wij + wji)?

Si= >
n
Sy = (wi +w,)?
i=1
L Z?:l(xi T Y)4 L
e S
Z(xi - %)?
i=1

For Moran’s I, the expected index value for a random pattern and the variances
are

—1
En(I) = Eg(l) = —
n—1
(n%8; — nS; +3W%)
VARRD =~ —oma b [Ey(D]
i it 2
VAR = nl(n® —3n+4+3)S; —nS +3W-]

(n—Dn—2)(n-3)HW?
: k[(n? —n)S; — nSy + 3W2]

bl 2
(n—1D(n—2)(n—3)W2 [Er(D)],

with W, S, Sz, and & similarly defined.
Once the expected values and their variances are calculated, the standardized
Z scores can be calculated as

_I-EW
T VAR(D

or

_C—-E(©)
FPEVARG)

Note that the same critical values of —1.96 < Z < 1.96 can be applied with a
statistical significance level of 5%, or 0.05.

While the calculation of the spatial autocorrelation coefficient is straightfor-
ward, the definition of the similarity of locations can have some variations from
those defined here. For example, w;; can take a binary form of 1 or 0, depending
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on whether point i and point j are spatially adjacent. If two points are spatially
adjacent, wy; = 1; otherwise, w;; = 0. If we use the concept of nodal region in
the geography literature, each point in a distribution can be seen as the centroid of
aregion surrounding it. If the two adjacent regions share a common boundary, the
two centroids of their corresponding regions can be defined as spatially adjacent.

Aside from various ways of defining w;;, it is also possible to vary how the
distance between points is used. For example, rather than defining w;; = 1/d;j,
one can use w;; = 1/ df’j where b may take any appropriate value based on specific
characteristics or empirical evidence associated with the geographic phenomena
in question. This is because the distances measured by driving a car between two
places can have quite different meaning from the distances measured by flying
between two places or making phone calls between them. Many empirical studies
indicated that » = 2 is widely applicable to many geographic phenomena.

Finally, it should be noted that spatial autocorrelation coefficients discussed
here are also used for calculating similarity among polygon objects. We will dis-
cuss those uses in more detail in Chapter 5.
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3.5 APPLICATION EXAMPLES

The methods discussed in this chapter are used to detect spatial patterns of point
distributions. Quadrat Analysis is concerned with how densities of points change
over space, and it is a spatial sampling approach. Quadrats of consistent size and
shape are overlaid on points in the study area. The frequency distribution of the
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z-valua = 1.24032

Figure 3.9 Reporting Moran’s I and Geary’s C Index values.

number of points in each quadrat is constructed and compared with the frequency
distribution of a theoretical random pattern. Nearest Neighbor Analysis, on the
other hand, exploits the spacing between neighbors. The distances between near-
est neighboring points are measured. The average of the distances from all possi-
ble pairs of nearest neighbors is compared to that of a theoretical random pattern.

Both Quadrat Analysis and Nearest Neighbor Analysis are useful in detecting
spatial patterns and comparing them with other known patterns. However, only
the locations of the points are considered. These two methods do not take into
account that different points in a distribution may be different in some ways or
may represent different activities or events. Therefore, the use of these methods is
limited.

Nevertheless, spatial autocorrelation coefficients consider the similarity of
point locations as well as the similarity of attributes of the points. These co-
efficients calculate how attribute values change over space with respect to the
locations of the points. Both Moran’s [ and Geary’s C have been discussed in this
chapter. They are gqually useful but differ in their numeric scales.

In this section, we will look at how these methods can help us understand how
point data distribute and, to a great extent, how we can use them to detect if the
data distribute in any distinguishable pattern. We will use two sets of point-based
data that represent the water transparency of monitored lakes.
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The first data set concerns the transparency of lakes, as monitored by the En-
vironmental Monitoring and Assessment Program (EMAP). EMAP is a program
supported by the U.S. EPA that collects and analyzes data on environmental qual-
ity in the United States. The data used here are a subset of the data available
from the program’s website, which can be reached via the EPA’s main web page.
EMAP has developed an intensive monitoring plan that attempts to characterize
fully the lake water quality of the northeastern United States. The data collected
include transparency (as measured by the Secchi disk), water chemical variables,
watershed characteristics, and information on fish, zooplanton, and diatom assem-
blages. The sampled lakes were selected using a stratified probabilistic approach,
which randomly selected lakes based on a criterion that defined the statistical
population of lakes in northeastern United States (Larsen et al., 1994).

Another data set is taken from the Great American Secchi Dip-In program.

- The North American Lake Management Society supports this program. Each year
during the week of July 4th, thousands of volunteers across the United States
and Canada dip their Secchi disks into lakes of their choice to measure the water
transparency (Jenerette et al., 1998). These volunteers then report their findings to
the program’s office, along with their answers to other questions about the lake’s
environmental conditions and how the lake is being used. The selection of lakes
being monitored has ro prestructured framework. It is determined entirely by the
volunteers. As a result, the lakes being monitored in this program represent the
lakes that are being used, that volunteers care about, and consequently, the ones
that need our attention.

Ome of the issues discussed recently is the sampling process used in the two
lake monitoring programs. EMAP, through great efforts, selected lakes using what
it considered to be a random pattern based on a stratified probabilistic approach.
The Dip-In program, on the other hand, lets volunteers made the selections. The
philosophical and theoretical approaches behind the two programs are entirely
different, and it will be interesting to examine how the outcomes differ. To provide
a visual impression of how the monitored lakes distribute, Figure 3.10 shows the
locations of the EMAP and Dip-In lakes.

On the issue of how to better sample lakes to be monitored, we can use the
methods discussed in this chapter to examine how the two data sets differ. We will
measure to what degree the lakes being monitored by the two programs deviate
from a random pattern to indicate indirectly how the sampling outcomes of the
two programs differ.

Now that the ArcView project file, Ch3 . apr, is available to us, it is just a
matter of running the script for the two data sets. To examine the data in more
detail, we can divide each data set by state boundaries to create subsets of data
in both cases. This is done so that we can see how the spatial patterns change
between scales. When the entire data set is used in the analysis, we test the spa-
tial pattern at a multistate scale. When testing the subsets, we are examining the
spatial patterns at a more detailed local scale.

Both data sets contain water transparency data (as an attribute in their Arc-
View shapefiles). Each of the data sets is divided into eight subsets for the follow-
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Figure 3.10 Spatial distribution of Dip-In lakes and EMAP lakes.

ing eight states: Connecticut (CT), Delaware (DE), Massachusetts (MA), Maine
(ME), New Hampshire (NH), New York (NY), Rhode Island (RI), and Vermont
(VT). Including the entire northeastern United States, each program has nine data
sets in this analysis.

Table 3.6 lists the results of running Ch3 .apr on each of the data sets and
subsets. It gives the statistics and their Z scores for Quadrat Analysis and Near-
est Neighbor Analysis. For Quadrat Analysis, 100 quadrats were used in each
run.

In Table 3.6, the number of data points in each data set is shown in parenthe-
ses with the program’s name. For example, EMAP has 350 lakes for the entire
northeastern United States, and Dip-In has 303 lakes. Some subsets are excluded
because one of the programs has fewer than five data points. They are being dis-
played with a gray screen. To identify significant results easily, those z-scores that
are greater than 1.96 or less than —1.96 are highlighted in boldface italics because
these z-scores indicate statistical significance at the o = 0.05 (or 5%) level.

For the entire northeastern United States, neither program shows any spatial
pattern when examined and tested by Quadrat Analysis. However, they are both
considered nonrandom patterns by Nearest Neighbor Analysis. They deviate from
the random pattern with a statistical significance at the @ = 0.05 level. When the
data are partitioned into subsets for individual states, monitored lakes in both the
EMAP and Dip-In programs show statistically significant dispersed patterns in
Massachusetts, Maine, New Hampshire, and New York. For Vermont, EMAP’s
lakes show much more dispersion than the Dip-In lakes.
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TABLE 3.6 Quadrat Analysis and Nearest Neighbor Analysis of EMAP Data and
Dip-In Data

Quadrat Analysis Nearest Neighbor Analysis
D Statistics Z score NNA Statistics Z score
USA Dip-In (305) 0.4308 0.0781 0.4128 19.5540
CT EMAP (14) 6.0000 0.3490 0.3103 4.9375
Dip-In (4) 23.5008 0.6240 0.8198
DE EMAP (13)
MA
ME
NH
Dip-In (44) 1.1818
RI EMAP (4) 24.0008
Dip-In (18) 4.5556
VT M 18
Dip-In (21) 3.7156
Notes:

e Numbers in parentheses are the number of points in each data set.
e Results from data sets with four or fewer points are screened.
e 7 scores above 1.96 are highlighted in boldface italic.

Two observations can be made. First, Nearest Neighbor Analysis is a more
powerful method than Quadrat Analysis because it detects what the Quadrat Anal-
ysis fails to detect. Second, volunteers, without special instructions, selected lakes
that show dispersion similar to that of the lakes selected by EMAP’s stratified
sampling, but to a lesser extent.

When examining the data sets for spatial patterns, we often wonder what spa-
tial pattern each data set will display. The spatial autocorrelation coefficients can
be used to assist the detection. Table 3.7 shows the results of running Ch3 . apr
for calculating Geary’s C index and Moran’s I index. Similar to Table 3.6, states
with fewer than five lakes in either the EMAP or Dip-In program are dropped from
further analysis. Any z-score that is either greater than 1.96 or less than —1.96 is
highlighted in boldface italic text, as it is statistically significant at the ¢ = 0.03
level.

With measures of water transparency data being tested by Geary’s Ratio,
EMAP shows some degree of a regionalized pattern but not much significance.
Geary’s Ratio is 0.9268 for the entire EMAP data set, suggesting that the spatial
pattern shows smooth changes in water transparency between neighboring lakes.
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TABLE 3.7 Spatial Autocorrelation In EMAP data and Dip-In Data

Geary’s C Z score Moran’s I Z score

Sl

NE E B“é%g e st y. A P %to'{)%‘i% "ﬁlg& i @‘Qz’@
USA Dip-In (303) 0.6814 —8 8528 0.1928 16.3977
€T EMAP (14) 1.4593 1.9502 —0.3569 —1.4290
Dip-In (4) 1.0253 0.3296 —0.3319 0.0043
DE EMAP (13) 0.9383 —0.5924 0.0910 1.5382
: Dlp-fn ) 0.0000 0.0000 0. 0000 0.0000
MA ) e
0 1120
ME aE
00779
NH 3T B e
—3.6065 0.1474 " 5.0601
NY 40080 001490342
—0.4744 —0.0301 —0.1131
RI EMAP (4) 0.0404 —0.2987 0.0993
Dip-In (18) ~0.1070 —0.3794
Dip-In ( (21) Z05391  —00184 03640
Notes:

e Numbers in parentheses are the number of points in each data set.

® Results from data sets with four or fewer points are screened.

e Z scores above 1.96 are highlighted in boldface italic.

e Z scores are calculated for the free sampling (or normality) assumption.

With the z-score approaching 0.0, the lakes monitored by EMAP do not show
spatial autocorrelation with enough statistical significance. Also with Geary’s
Ratio, the lakes in the Dip-In program seem to show a much stronger degree
of spatial autocorrelation. This means that the neighboring lakes tend to show
similar values of water transparency. As suggested by the z-score, this data set
may be more appropriate for analysis of a regional trend. When Moran’s I is
used, the lakes in both programs show a statistically significant departure from a
random pattern. This is demonstrated by the high z-scores of 5.0786 (EMAP) and
16.3977 (Dip-In).

As for the data on individual states, the Dip-In program has Maine and New
Hampshire showing strong regional trends, while Vermont shows contrasting
transparency values between neighboring lakes. For the EMAP lakes, none of
the states has a strong correlation of a point pattern to be detected by Geary’s C
index.

When using Moran’s I index on data sets of individual states, we see that the
EMAP program’s lakes in Massachusetts and Vermont show strong dissimilarity
between neighboring lakes in terms of water transparency. For Dip-In’s data set,
Maine and New Hampshire show a strong regional trend, as their transparency
values tend to be similar between neighboring lakes.



