CHAPTER 1

ATTRIBUTE DESCRIPTORS

The world we live in is a complex and dynamic one. To better understand the
world, we often need to reduce it to some simple representative models. We often
construct models of the real world to decrease the complexity of any problems
we study to a manageable level so that we can solve them. We use models of the
real world to provide a static version of nature so that we can focus better on the
issues at hand.

Geographers typically model the world with objects located at different places
on the surface of the world. We use different types of objects to represent the
complicated world. We formulate relationships between objects to simulate the
dynamics of the world systems. Specifically, we use models to represent the world
via simplification.

A map is an example of how the real world is modeled. As the map in Fig-
ure 1.1 shows, objects in the real world are represented by different symbols: lines
show how rivers run their courses and how roads are connected, while points
(small, solid circles and squares) and polygons (or rectangles of various sizes)
show the locations of special interest.

In Figure 1.1, the point representing the county fairground is easily recognized
because a text label accompanies it. Similarly, Cuyahoga River, State Route 14,
and other highways are identifiable because each of these has a label to identify
it. For various buildings represented by squares, however, there is no additional
information to help map readers separate one from another to show what they are
or what they are for.

We need additional information to give meaning to the symbols we use to
represent the real world. Like the squares in Figure 1.1, symbols remain only
symbols unless we associate them with additional attribute information. Lines are
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Figure 1.1 A map as a model of the real world.

only lines and points are only points if there is no additional attribute information
to describe their properties and characteristics.

In managing geographic information, the conventional approach to structuring
spatial data is to have cartographic data describing the locations, shapes, or other
spatial characteristics of the objects and to have attribute data describing other
characteristics of the objects. In Figure 1.2, a set of points, representing cities
in the three-county area in northeastern Ohio, are shown. To describe each of
these points, an attribute table records information on their characteristics. In this
attribute table, each record is linked to a point. Each record contains a number of
fields that store attribute data for the associated point. This way, the characteristics
of each symbol we use in a map that represents geographic objects in the world
can be described in detail in the attribute table.
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Figure 1.2 Map view and attribute table.

Let’s first turn our attention to the attribute tables in geographic information
systems (GIS) databases. As mentioned earlier, each record in an attribute table
contains a number of fields. Since each record is associated with an object—or, in
statistical terms, an observation in the map view—the data stored in the fields in
a record are the information describing the associated object or observation in as
many ways as the number of fields.

There are several types of data an attribute table can store. Numerical data are
measured quantitatively. We can easily find examples of this type of data: areas
of farms, precipitation amount at each monitoring station, population count for
each county or city, and so on. This type of information is normally referred to as
being measured at ratio scale. Data measured at ratio scale typically have a real
zero value. For example, temperature at 0° Kelvin means no energy. By definition,
there is no situation with a temperature below 0° Kelvin. Therefore, temperature
measured in Kelvin is of ratio scale. Another obvious example is any data value
measured in proportion, such as population densities, male/female ratios in high
school classrooms, cost/benefit ratios, and so on. The absolute minimum for a
proportion is 0. A proportion below 0 is not interpretable. Mathematical opera-
tions such as addition (+), subtraction (—), multiplication (), and division (/)
can be applied to data that are measured at ratio scale.

When there is no real zero value for the phenomenon being measured but the
data are on a continuous scale, the data are measured at interval scale. Examples
of this type of measurements include temperatures and elevations. A temperature
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of 0°C does not mean that there is no temperature. It simply means that the tem-
perature is at the position where it was defined as 0°C. In fact, it is 32°F when the
temperature is 0°C. For elevation, 0 meter above sea level does not mean that there
is no elevation. It simply means that it is at the same elevation as the average ele-
vation of oceans. For data measured at this scale, all four mathematical operations
are applicable. With both ratio and interval data, putting aside the preciseness of
the measurement, we know the exact position of the observation along the contin-
uous value line. While interval data are measured by some defined intervals, the
differences between intervals sometimes are not proportional. For example, the
difference between 80°F and 90°F is not the same as the difference between 80°F
and 70°F in terms of how warm you feel, even though the difference is 10°F in
both cases.

There are situations in which data simply give the order of the measured phe-
nomenon. In this case, the data are said to be measured at ordinal scale. We can
use 1,2, 3, ..., to represent the order or the ranking of cities in a state according
to their population sizes. We can use descriptions or terms such as high, medium,
or low altitude to represent the heights of mountains in a rough sense. Then ob-
servations are grouped into classes, and the classes follow an order. With ordinal
data, mathematical operations such as +, —, *, or / cannot be applied. With only
their ranks, we know which city is larger than another given city, but we don’t
know by how much. For ordinal data, we know the order of measured phenom-
ena but we cannot add two measures to get another measure, that is, Ist + 2nd =
3rd.

Finally, we can measure phenomena in categorical form. This is known as
measuring at the nominal scale. For this scale, no mathematical operations can
be applied because nominal data only identify individual objects being measured.
We don’t even have the order between these objects, which we would know if
they were measured at ordinal scale. We can easily think of many examples of
data at this scale: street numbers of the houses along a street, telephone numbers
of friends, flight numbers, zoning codes for different types of land use, and so on.
Please note that the numbers at nominal scale, simply represent different things.
They cannot be added or multiplied. Adding two telephone numbers will not result
in another telephone number. Dividing house numbers by another house number
is meaningless.
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GIS data sets are often large. A thematic GIS data layer of land use can easily
contain more than 2,000 polygons for a large area. In a study matching potential
customers and a newspaper’s distribution system, the associated attribute table
can easily have over 10,000 records in a moderately sized metropolitan region.
Therefore, understanding the data will not be simple. For meaningful analysis of
attribute data associated with map views, statistics are needed to describe, to sum-
marize, or to find the relationships between attributes and geographical features.

In the subsequent sections, we will first look at ways to calculate descriptive
statistics of attribute data using ArcView. These descriptive statistics indicate var-
ious statistical properties, such as central tendency and dispersion of the data.
Statistics depicting the relationship between attributes will also be discussed.

1.1 CENTRAL TENDENCY

Often the first step in analyzing a set of numerical data is to measure their central
tendency. The concept of central tendency uses a representative value to summa-
rize the set of numerical data. For example, an average family income from a
census tract gives an idea of the economic status of families in that census tract.
Using the average family income to represent all income figures in that census
tract allows us to quickly get an overall impression of its economic status.

In surveying students at Kent State University about their means of commut-
ing, we found that most of them drive to the university. That specific type of
commuting choice as nominal data, therefore, is the mode of commuting of those
students. When comparing housing prices between neighborhoods, we often use
the housing price in each neighborhood that stands close to the middle of the
range of prices. Comparing the middle prices between neighborhoods allows us
to avoid the pitfall of comparing the highest housing price in one neighborhood
to the lowest housing price in another neighborhood.

The concept of central tendency is applied in everyday life. People use average
Scholastic Aptitude Test (SAT) scores of freshman classes to compare how well
a college does between years or to compare how colleges stand in relation to
other colleges. We use phrases such as typical weather or typical traffic pattern
to describe phenomena that happen most often. These are just a few of the many
examples we can find everywhere.

1.1.1 Mode

The mode is the simplest measure of central tendency. It is the value that occurs
most frequently in a set of data; consequently, that specific value is also known as
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the modal value. For categorical or nominal data, the category that has the most
observations or highest frequency is regarded as the mode. When working with
ordinal data, the mode is usually the rank shared by two or more observations.

The modal value for interval or ratio data may not be very useful because that
value may not occur more than once in a data set. Alternatively, researchers often
degrade or simplify interval or ratio data to nominal scale by assigning individual
data to one of the categories that they set up based on ranges of data values.

In Table 1.1, a total of 51 countries and territories in North and South America
are listed by their population counts in 1990, areas in square miles, population
densities, and categories of low/medium/high population density. The locations
of the listed countries are shown in Figure 1.3.

To illustrate the use of mode and the effect of degrading interval/ratio data to
nominal data, Table 1.1 first calculates the population density of each country by
dividing the population count by its area. When examining the derived population
densities, we cannot find a mode because no two or more countries have the same

TABLE 1.1 Population Density of Countries in the Americas

Area in Population
Country Population Sq Miles Density Category
Anguilla 9,208 33 276 Low
Antiuga and Barbuda 65,212 179 365 Medium
Argentina 33,796,870 1,073,749 31 Low
Aruba ) 67,074 71 950 High
Bahamas, The 272,209 4,968 55 Low
Barbados 260,627 170 1,534 High
Belize 207,586 8,562 24 Low
Bermuda 59,973 15 3,941 High
Bolivia 7,648,315 420,985 18 Low
Brazil 151,525,400 3,284,602 46 Low
British Virgin Islands 18,194 63 290 Low
Canada 28,402,320 3,824,205 7 Low
Cayman Islands v 31,777 107 297 Low
Chile 13,772,710 286,601 48 Low
Columbia 34,414,590 440,912 78 Low
Costa Rica 3,319,438 19,926 167 Low
Cuba 11,102,280 42,642 260 Low
Dominica 70,671 283 250 Low
Dominican Republic 759,957 18,705 415 Medium
Ecuador 10,541,820 99,201 106 Low
El Salvador 5,752,470 7,991 720 High
Falkland Islands 2,136 4,446 0 Low
French Polynesia 217,000 1,167 186 Low
Grenada 95,608 142 675 High
Guadeloupe 410,638 673 610 High
Guatemala 10,321,270 42,279 244 Low
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TABLE 1.1 Continued

: Area in Population
Country Population Sq Miles Density Category
Guyana 754,931 81,560 9 Low
Haiti 7,044,890 10,485 672 High
Honduras 5,367,067 43,572 123 Low
Jamaica 2,407,607 4,264 565 Medium
Martinique 374,574 425 881 High
Mexico 92,380,850 757,891 122 Low
Montserrat 12,771 41 314 Medium
Netherlands Antilles 191,572 311 617 High
Nicaragua 4,275,103 49,825 86 Low
Panama 2,562,045 28,841 89 Low
Paraguay 4,773,464 154,475 31 Low
Peru 24,496,400 500,738 49 Low
Pitcairn Islands 56 21 3 Low
Puerto Rico 3,647,931 3,499 1,043 High
St. Kitts and Nevis 42,908 106 404 Medium
St. Lucia 141,743 234 606 High
St. Pierre and Miquelon 6,809 94 72 Low
St. Vincent and the 110,459 150 734 High
Grenadines
Suriname 428,026 56,177 8 Low
Trinidad and Tobago 1,292,000 1,989 650 High
Turks and Caicos Islands 14,512 189 77 Low
United States 258,833,000 3,648,923 71 Low
Uruguay 3,084,641 68,780 45 Low
Venezuela 19,857,850 353,884 56 Low
Virgin Islands 101,614 135 755 High

population density value. If we really want to identify the mode for this data set,
the data have to be degraded from ratio scale to nominal scale.

If we define population densities below 300 persons per square mile as low,
those between 300 and 600 persons per square mile as medium, and those over
600 persons per square mile as high, we can see from the last column in Table 1.1
that low density is the mode of this set of population densities. With the mode,
we now have an overall impression of the levels of population density in these
countries.

1.1.2 Median

The median is another measure of central tendency. In a set of data, the median
is the middle value when all values in the data set are arranged in ascending or
descending order.
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Figure 1.3 Population densities of the Americas.

To find the median of the population densities listed in Table 1.2, we first sort
the table by population densities. Since 31 countries are listed in this table, the
16th value in the sorted sequence will be our median. The 16th entry in the list is
314 persons/mile” (Montserrat).

When the number of observations in a data set is odd, it is relatively simple to
work out the median of the set. For a set of data containing an even number of
values, the median is simply the value midway between the two middle values. For
example, there are 12 countries listed in Table 1.3. The middle two values are 45
persons/mile? (Uruguay) and 46 persons/mile? (Brazil). The median of the set of
12 population densities will therefore be 45.5 persons/mile? since (45 + 46)/2 =
45.5 (persons/nﬁlez).

In general, a median can be found in any data set containing interval or ratio
data. The median of a data set gives a value that is at the middle of the set. This
median value is not severely affected by the inclusion of extremely large or ex-
tremely small values in the data set since it is defined by its position in the ordered
sequence of data values.

1.1.3 Mean

The mean is the most commonly used measure of central tendency. It is the aver-
age value in a data set. This average is also known as arithmetic mean because of
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TABLE 1.2 Population Density of Countries in Central America

Area in Population
Country Population Sq Miles Density Category
Belize 207,586 8,562 24 Low
Bahamas, The 272,209 4,968 55 Low
United States 258,833,000 3,648,923 71 Low
Turks and Caicos Islands 14,512 189 77 Low
Nicaragua 4,275,103 49,825 86 Low
Panama 2,562,045 28,841 89 Low
Mexico 92,380,850 757,891 122 Low
Honduras 5,367,067 43,572 123 Low
Costa Rica 3,319,438 19,926 167 Low
Guatemala i 10,321,270 42,279 244 Low
Dominica 70,671 283 250 Low
Cuba 11,102,280 42,642 260 Low
Anguilla 9,208 33 276 Low
British Virgin Islands 18,194 63 290 Low
Cayman Islands 31,777 107 297 Low
Montserrat 12,771 41 314 Medium
Antigua and Barbuda 65,212 179 365 Medium
St. Kitts and Nevis 42,908 106 404 Medium
Dominican Republic 7,759,957 18,705 415 Medium
Jamaica 2,407,607 4,264 565 Medium
St. Lucia 141,743 234 606 High
Guadeloupe 410,638 673 610 High
Netherlands Anitlles 191,572 311 617 High
Haiti 7,044,890 10,485 672 High
Grenada 95,608 142 675 High
El Salvador 5,752,470 7,991 720 High
St. Vincent and the 110,459 150 734 High
Grenadines
Martinique 374,574 425 881 High
Aruba 67,074 71 950 High
Puerto Rico 3,647,931 3,499 1,043 High
Barbados 260,627 170 1,524 High

the way it is calculated. The mean is calculated by adding together all the values
in a data set and then dividing the sum by the number of values. The equation for
calculating the mean is

n
— E._ X;
X:%,

where X (read as “X bar”) denotes the mean of a group of values: x1, x3, ..., X.
If there were 5 values in the data set, n would be 5. The symbol, Z?:t X;, means
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TABLE 1.3 Population Density of Countries in South America

Areain Population
Country Population Sq Miles Density Category
Argentina 33,796,870 1,073,749 31 Low
Bolivia 7,648,315 420,985 18 Low
Brazil 151,525,400 3,284,602 46 Low
Chile 13,772,710 286,601 48 Low
Columbia 34,414,590 440,912 78 Low
Ecuador 10,541,820 99,201 106 Low
Guyana 754,931 81,560 9 Low
Suriname 428,026 56,177 8 Low
Paraguay 4,773,464 154,475 31 Low
Peru 24,496,400 500,738 49 Low
Uruguay 3,084,641 68,780 45 Low
Venezuela 19,857,850 353,884 56 Low

adding all 5 values as follows:

n
fo =x1 + X2 +x3 + X4 + X5.

i=1

As an example, even though it is simple, Table 1.4 lists the levels of population
density for Canada and the United States. The mean can be calculated as

2
Liz1 % = 7+7 = E =39 (persons/milez).

X== 2 2

There are two density values, so n = 2. The mean is simply the average of the

two values. .
In Table 1.1, 51 countries are listed, so the mean population density is

Zisilxi x] +x9+ -+ X5] _276+365+"'+755

X = = = = 385.79.
= 51 51 51
TABLE 1.4 Population Density of Canada and the United States
Area in Population
Country Population Sq Miles Density Category
Canada 28402320 3,824,205 7 Low
United States 258,833,000 3,648,923 71 Low
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Similarly, in Table 1.2, the mean population density for Central American coun-
tries is

Yiliti  xitxodcdtxn 244554 +1534

X =
31 31 31

= 446.56.

For the South American countries, the mean population density can be calculated
from Table 1.3 as

Y25 xi4x4-4xn 84944106

X =
51 12 12

=43.82.

The above calculations of the mean of interval or ratio data are appropriate if
all values are counted individually. But if observations are grouped into classes
and all observations within each group are represented by a value, the calculation
of the mean will be slightly different-"The mean derived from the grouped data
is usually called the grouped mean or weighted mean. Assuming that the value
midway between the upper bound and the lower bound of each class is the repre-
sentative value, x;, and f; represents the number of observations in the ith class,
the weighted mean, X,,, can be calculated as

k v
Yw = —Zifl ‘flxl 1)
>zt fi

where k is the number of classes.

Before computers were widely available, the grouped mean was used to esti-
mate the overall mean in a very large data set. In this procedure, observations are
divided into groups according to their values. A value from each group, typically
the midpoint between the lower and upper bounds of the group, is used to repre-
sent the group. When calculating the grouped mean, the number of observations
in each group is used as the weight. This is also the reason why the grouped mean
is often called the weighted mean.

Compared to the median, the mean is very sensitive to the inclusion of extreme
values. Even if only one extremely large value is added to the data set, the average
of all values in the data set will be pulled toward a larger value. As a result, the
mean may be overestimated.

It is important to note that mode, median, and mean are three different measure
of central tendency. When applied to a common data set, these three measures
will give three different values. They differ in their definitions and in how they
are calculated, so they have different meanings.

1.2 DISPERSION AND DISTRIBUTION

While the mean is a good measure of the central tendency of a set of data values,
it does not provide enough information to describe how the values in a data set
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are distributed. With the central tendency, we know what the average value is but
we do not know how the values scatter around this average. Are the values similar
to the mean, with only small differences? Do the values vary very differently
from the mean? We don’t know for sure unless we can measure how these values
disperse or concentrate around the mean.

To illustrate the need for more information than the mean can give, let us use
an example of the following series of numbers to compute their mean:

X 2,5.1,4,7,3,6

5 _2HSHIHA+THIH6

.= =
)

4,

The mean, 4, seems to be reasonably representative of these numbers. However,
the following series of numbers also yields a mean of 4, with quite a different
composition:

xp: 24, —18,21,-43,2,33, 23
o W (I8 4204 (439 +24 334 (=23)

4.
b 7

If we only know the means of these two sets of numbers, and have no further
information, we might speculate that the two data sets are very similar to each
other because their means are identical. However, by briefly examining the two
number series, we know that the first series has a relatively narrow range centered
at the mean, while the second series has a very wide range, that is, a highly dis-
persed set of values. Relying on the mean alone to compare these two series of
values will yield misleading results. The truth is concealed by the large positive
and negative values offsetting each other in the second series.

To better understand how values in a data set distribute, a number of descriptive
statistics can be used. These include mean deviations, standard deviations, skew-
ness, and kurtosis. These measures provide information about the degree of dis-
persion among the values and the direction in which the values cluster. Together
they describe the distribution of numeric values in a data set so that analysts can
understand the distribution or compare it with other distributions.

1.2.1 Mean Deviation

The first measure of dispersion is the mean deviation. It takes into account every
value in the data set by calculating and summing the deviation of each value from
the mean, that is, the difference between each value and the mean. The equation
for calculating the mean deviation is

E?:] [x; — ?|
S e

Mean deviation =

For data series x,, the mean deviation is
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Mean deviation,
g |2—4|+15—4k+|1—4|+|4—4&+1”f—4|+|3—4}+16#4|
s 7

2414340434142
- 7

=17

The symbol |x — X| denotes the absolute difference between each value of x
and the mean. So the equation first adds up all the absolute differences and then
divides this number by the number of values to get the average of all absolute
differences. This average absolute difference is the mean deviation. For the other
series, x, the mean deviation is 20.57, which is quite different from 1.71 of se-
ries x,. B

This measure is simple to calculaté and easy to understand. It provides a con-
venient summary of the dispersion of a set of data based on all values. In this
manner, each value influences the mean deviation. A value that is close to the
mean contributes little to the mean deviation. A value that is further away from
the mean contributes more. With this measure, the presence of extremely large or
extremely small values can be shown.

1.2.2 Variation and Standard Deviation

In calculating the mean deviation, we use the absolute values of the differences
between data values and the mean as deviations because we need to make sure that
positive deviations are not offset by negative deviations. Another way to avoid the
offset caused by adding positive deviations to negative deviations is to square all
deviations before summing them. The variance is one such measure. It can be
calculated as
n 2
2 Lizi(xi —X)

ot ===
n

where o2 is the variance. The i, n, and X are the same as those defined earlier.
The equation for the variance actually calculates the average squared deviation
of each value from the mean. While it is easier to understand it is not efficient in
computation. A more computationally efficient formula for variance is

T Yiox ¥
n

This formula is more efficient because it minimizes the rounding error intro-
duced by taking the differences and then squaring them.

Although variance measures dispersion in a data set, it is not commonly used
because of its large numeric value. The deviations are squared before they are
averaged. The process of squaring the deviations often leads to large numbers
that cannot be compared directly to the original data values. As a remedy, the
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square root of the variance is often used to describe the dispersion of a data set.
This measure is known as the roof mean square deviation, or simply standard
deviation. It can be calculated as

Z?=1 (x; — f)2

or

The standard deviation value is similar in numeric range to the data values. It is
used more often than variance because taking the root of the squared deviation
returns the magnitude of the value to that of the data set.

As an example, Table 1.5 shows the calculation of the standard deviation of the
population densities from the 12 South American countries. For these 12 popula-
tion densities, the mean is 43.916 (rounded to 44). The variance is 748. Therefore,
the standard deviation is 27.35 because 1/748 = 27.35.

Similarly, the variance for the population density values of all countries in the
Americas is 372,443.36, and for the Central American countries it is 122,734.90.
The standard deviations are 350.34 for the Central American countries and 610.28
for all countries in the Americas.

TABLE 1.5 Variance and Standard Deviation

Population
Country Density x x—X (x — }1’)2
Argentina 31 —13 169
Bolivia .18 26 676
Brazil 46 2 4
Chile 48 4 16
Colombia - T8 34 1156
Ecuador 108 64 4096
Guyana 9 -35 1225
Suriname 8 —-36 1296
Paraguay 31 -13 169
Peru 49 5 25
Uruguay 45 1 1
Venezuela 56 12 144
Ly 527 8977
X 44 748
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The standard deviation has another useful property to help describe how val-
ues in a data set distribute. Statistically, the inclusion of data values in a value
range bounded by standard deviations results in a well-known relationship if the
distribution of the data closely resembles that of a nermal distribution:

1. About 68% of the data values are within 1 standard deviation on either side
of the mean, that is, values within an interval bounded by X—ocand X +o.

2 About 95% of the data values are within 2 standard deviations on either
side of the mean, that is, values within an interval bounded by X — 20 and
X +20.

3. About 99% of the data values are within 3 standard deviation on either side
Oj the mean, that is, values within an interval bounded by X — 30 and
X +30.

Similar to the calculation of the m&an, a weighted variance and the associated
weighted standard deviation can be derived from data representing observations
grouped into classes. Adopting the same notations used before, the weighted vari-
ance is defined as

k
ol _ |:Zfi(xf —fw)2:|-

w = —k
Zi:l f‘ i=1

This intuitively meaningful formula also has its computational counterpart. For
more efficient computation of the grouped variance, the following formula should

be used:

k k
o2 == [Zﬁx?—Zﬁ(_iw)z]
i=1

w= ko
2= fi Lis

Then the standard deviation for the grouped data is the square root of the weighted
variance.

The mean and the standard deviation describe where the center of a distribution
is and how much dispersion a distribution has. Together they provide a sketch of
the distribution as a basis for understanding a data set or comparing multiple data

sets.

1.2.3 Skewness and Kurtosis

For a set of values, the mean gives its central tendency. The standard deviation
suggests how much the values spread over the numeric range around the mean.
There are also other characteristics of a numeric distribution that can be described
by using additional measures. These include skewness, which measures the di-
rectional bias of a numeric distribution in reference to the mean, and kurtosis,
which measures the peakness of a numeric distribution. Combining the mean, the
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standard deviation, the skewness, and the kurtosis, we have a set of descriptive
statistics that can give rather detailed information about a given numeric distribu-
tion.

To understand how the skewness and kurtosis of a numeric distribution are
calculated, it is necessary to discuss the concept of frequency distribution. The
frequency distribution is often shown in a Aistogram in which the horizontal axis
shows the numeric range of the data values and the vertical axis shows the fre-
quency, that is, the number of values in each interval. Figure 1.4 shows five ex-
amples of frequency distributions with different levels of skewness and kurtosis.
At the top is a symmetric distribution with low skewness and medium kurtosis.
The two skewed distributions in the middle row show distributions with direc-
tional bias but low kurtosis. The two distributions in the bottom row show the

Low skewness, various kurtosis

Figure 1.4 Frequency distribution: skewness and kurtosis.
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Population Densities in American Countries
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Population Densities in South American Countries

Figure 1.5 Frequency distribution of population densities of American countries.

difference between two kurtosis values. Figure 1.5 shows the frequency distribu-
tions of population density of the three America regions.

Skewness measures the extent to which the bulk of data values in a distribution
are clustered to one side or the other side of the mean. When most values are
less than the mean, the distribution is said to be positively skewed. Alternatively,
a negatively skewed distribution is a distribution in which the bulk of the values
are greater than the mean. Specifically, skewness can be calculated by

o
Skewness = —E%wi
no
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where x, X, o, and n are the same as defined earlier. Notice that the measure of
skewness is based on the cubic value of the deviations from the mean (or mean
deviation) and the cubic value of the standard deviation, o .

Because o is positive, the denominator of the skewness formula is always pos-
itive. The numerator, however, can be positive or negative. If most of the values
are smaller than the mean, the numerator will be negative and thus the distribution
will be positively skewed. If most values are larger than the mean, the numerator
will be positive and the skewness measure will be negative. The skewness of a
symmetric distribution is 0 (zero).

Take the data set of population densities in South American countries as an
example. Table 1.6 shows that

n
> (xi — X)? = 191873,
i=1

Since o is 27.35, as derived earlier, the skewness can be calculated as follows:

Y —%X)° 191,873 191,873
no’ T 12x 2735 245,501

Skewness = = (.7816.

The distribution is thus moderately skewed in the positive direction, that is, coun-
tries with density levels higher than the mean are more frequent than countries
with below-average density. '

TABLE 1.6 Skewness and Kurtosis

Population
Country Density x x—X (x — f)z (x— Y)B x-x)*
Argentina 31 —=13 169 —2197 28561
Bolivia 18 -26 676 —17576 456976
Brazil 46 2 4 8 16
Chile 48 4 16 64 256
Colombia 78 34 1156 39304 . 1336336
Ecuador 108 64 4096 262144 16777216
Guyana 9 -35 1225 —42875 1500625
Suriname 8 -36 1296 —46656 1679616
Paraguay 31 -13 169 —2197 28561
Peru 49 5 25 125 625
Uruguay 45 1 1 1 1
Venezuela 56 12 144 1728 20736
b 527 8977 191873 21829525

X 44 748
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Skewness is most useful when it is used to compare distributions. For example,
two distributions can have similar means and similar standard deviations, but their
skewness can be very different if there are different directional biases.

With kurtosis, the extent to which values in a distribution are concentrated in
one part of a frequency distribution can be measured. If the bulk of values in a
distribution have a high degree of concentration, the distribution is said to be very
peaky. Alternatively, a flat distribution is one without significant concentration of
values in one part of the distribution.

The kurtosis is usually measured by the following equation:

Z?:l(xi -x) _

Kurtosis = )
no

The kurtosis is based on the fourth power of deviations of the values from their
mean and the fourth power of the standard deviation, o.

By subtracting 3 from the first part of the kurtosis equation, we structure the
calculation of kurtosis so that a symmetrical, bell-shaped distribution has a value
close to 0. In this way, a peaky distribution will have a positive kurtosis value and
a flat distribution will have a negative kurtosis value.

Still using the population density values in South America, Table 1.6 gives
S (ki — X)* = 21829525 and o2 = 748. Therefore,

12 T4
2 (5 — X
Kurtosis = Z‘-I%_ﬂ)_ -3
no
1,829,525
=—--—2’ % —-3=325-3
12 x 7482
=0.25

giving a distribution that is slightly peaky.
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Figure 1.6 Function for calculating additional statistics.
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1.3 RELATIONSHIP

The descriptive statistics discussed in the previous sections are useful for under-
standing and comparing how values distribute within one data set or between data
sets. The mean, standard deviation, skewness, and kurtosis, although providing a
basis for comparing different distributions, cannot measure the relationship be-
tween distributions quantitatively. To do so, we will need to apply the technique
that this section discusses. This technique is based on the concept of correlation,
which measures statistically the direction and the sirength of the relationship be-
tween two sets of data or two variables describing a number of observations.

Given two counties in the same region where a similar tax code and similar
developmental strategies have been applied, a comparison of their average fam-
ily income figures will give us an impression of how well each county performs
economically. If we consider subscribing to the concept that more spending on
higher education will result in better economic progress, a look at the relationship
between spending on higher education and some indicators of economic status
will provide a potential answer. For this type of comparison, we typically mea-
sure how strongly the values of these two variables are related and the direction
of their relationship.

The direction of the relationship of two variables is positive (or direct) if one of
the values in a variable behaves similarly to another variable. For example, when
the value of one variable for a particular observation is high, the value of the
other variable for that observation is likely to be high. Alternatively, a negative
(or inverse) relationship between two variables indicates that the value of one
variable increases when the value of the other variable decreases. Of course, the
stronger the relationship is, the more predictable this pattern will be.

In Figure 1.7, there are three diagrams that plot pairs of values as points in
what are called scarterplots. In the top diagram, the relationship between the total
length of motorways in the United Kingdom in 1993 is positively related to the
total number of vehicles by region in 1991. Notice that the points show a pattern
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Figure 1.7 Sample relationships.

that runs from lower left to upper right. Taking any region as an example, it seems
that a higher total number of vehicles in a region is often associated with a higher
total length of motorways. In the lower diagram, the gross death rates and gross
birth rates in regions of the United Kingdom in 1994 clearly show an inverse
relationship. The pattern, as illustrated by the points in this scatterplot, indicates
that a region with a high birth rate have a low death rate. The middle diagram
shows the relationship between birth rate and population density. In this case,
there does not seem to be a relationship at all; the trend as depicted by the points
is flat, forming an almost horizontal line.
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Beyond the direction of the relationship between two sets of data values, the
strength of the relationship can be estimated quantitatively, and of course visually,
from the scatterplots. In Figure 1.7, the top plot indicates a stronger relationship
than the relationship described by the bottom plot. This is because the point dis-
tribution in the top plot is less scattered than that of the bottom plot.

Quantitatively, we can measure the direction and the strength of the relation-
ship between two sets of data values by calculating the correlation coefficient. In
this section, we will discuss only what is known as the product-moment correla-
tion coefficient (or Pearson’s correlation coefficient). This coefficient works best
for interval/ratio scale data. For data measured at nominal or ordinal scales, other
coefficients (x 2 and Spearman’s rank coefficient) should be applied.

The Pearson’s correlation coefficient, r, between two variables, x; and y;, i =
1,2,...,n, can be calculated by

L Xm0 = 7)
- (n—1)S:Sy '

where S, and S, are the standard deviations of x and y, respectively.

The numerator is essentially a covariance, indicating how the two variables, x
and y, vary together. Each x; and y; is compared with its corresponding mean. If
both x; and y; are below their means, the product of the two negatives will be a
positive value. Similarly, if both are large, the product will be positive, indicating
a positive correlation. If x; is larger than the mean but y; is smaller than the mean,
the product will be negative, indicating an inverse relationship. The sum of all
these covariations reflects the overall direction and strength of the relationship.
For computational efficiency, we prefer to use the formula

Z?:lxiyi XY
n

5. Sy ’

where X and Y are means for x and y, respectively, and Sy and S, are standard
deviations for x and y, respectively, defined as

T oox?
S, = L_Xz
n

and

Yio1 Y e gt
n

Sy =

This coefficient is structured so that the sign of the value of r indicates the
direction of the relationship as:
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r > 0 when the relationship between the two variables is a direct (or positive)
one,

r < 0 when the relationship between the two variables is an inverse (or nega-
tive) one, and :

r A 0 when there is no relationship between the two variables.

The absolute value of r indicates the strength of the relationship with a numeric
range of:

r = —1 for the strongest or perfectly inverse relationship and
r = 1 for the strongest or perfectly direct relationship.

TABLE 1.7 Data for Pearson’s Product-Moment Correlation Coefficient
Total Length Total No.

Regions of Motorways  of Vehicles
(n=11) X y x2 y2 xy
North 152 923 23,104 851,929 140,296
Yorkshire and 289 1629 83,521 2,653,641 470,781
Humberside

East Midlands 185 1438 34225 2,067,844 266,030
East Anglia 22 890 484 792,100 19,580
South East 919 6893 844,561 47,513,449 6,334,667
South West 302 1960 91,204 3,841,600 591,920
West Midlands 378 2066 142,884 4268356 780,948
North West 486 2945 236,196 8,673,025 1431270
Wales 120 979 14,400 958,441 117,480
Scotland 285 1545 81,225  2387,025 440,325
Northern Ireland 113 483 12,769 233,289 54,579

n=11

Y x =3251 Yy =21751

X =295.55 Y =1,977.36

S x? = 1,564,573 3 y? = 74,240,699

X7 = 87,349.81 Y2 =3,909,952.57

1,564,753 _ /74,240,699
Se = L8T8 _g7347.02 | sy = /206 _3039,052.57
=23431 =1,684.99

¥ xy = 10,647,876
10.647.876 _ 295.55 x 1,977.36 _ 967,988.73 — 584,408.75

r .

234.31 x 1,684.99 . 394,810
383,579.98
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Table 1.7 shows an example of the calculation of Pearson’s product-moment
correlation coefficient. The two variables are:

x: Total number of private vehicles (except tractots and motorcycles) in 1991
vy: Total length of motorways in kilometers in 1993.

The resulting correlation coefficient 0.97, indicating a very strong, positive rela-
tionship between the two variables. Specifically, a region that has a larger number
of vehicles also has a longer total motorway.

1.4 TREND

The previous section focused on the technique for measuring the direction and
strength of the relationship between two variables. In this section, we will discuss
the technique for measuring the trend, as shown by the relationship between two
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Figure 1.9  Steps for calculating the correlation coefficient.

Figure 1.8 Statistical function of correlation.
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Figure 1.10  Simple linear regression model.

variables. The technique shows the dependence of one variable on another. Going
beyond knowing the strength and direction of the relationship, the technique for
measuring the trend allows us to estimate the likely value of one variable based
on a known value of another variable. This technique is known as the regression
model. Although the regression model does not imply a causal relationship, it
provides the information necessary for the prediction of one variable by another.

To illustrate what measuring the trend of the relationship between two vari-
ables means, Figure 1.10 shows the relationship between expenditure on higher
education in 1993 and gross domestic product (GDP) (in million European Com-
munity Units (ECU)) in 1993 by region in the United Kingdom. It can be seen
that there is a positive, strong correlation between the two variables. For regions
where GDP was high, spending on higher education was also high. Alternatively,
the relationship shows that regions with less spending on higher education are
also regions with lower GDP. The straight line running between the data points is
the regression line. Because this trend line is a linear one, this type of regression
model is also called simple linear regression or bivariate regression because it
involves only two variables.

The simple linear regression model is the simplest form of regression model.
It is generally represented as

Y =a+bX,

where

Y is the dependent variable,
X is the independent variable,
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a is the intercept, and
b is the slope of the trend line.

The variable that is used to predict another variable is the independent variable
(X). The variable that is predicted by another variable is the dependent variable
(Y). The intercept is the value of the dependent variable when the value of the
independent variable is zero or the value of ¥ when the regression line intersects
the y-axis. Finally, the slope is the rate of change of the dependent variable’s value
as a per unit change of the independent variable.

The procedure for finding the trend line is to fit a regression line among all
data points. Specifically, the procedure is to find the value of a (intercept) and the
value of b (slope) in the regression line ¥ = a + bX:

b S xy —nXY
yox?— nX’
and
a=7Y —bX,

where 3 xy is the sum of the products x; y;, i = 1,2,...,m sz is the sum of
squared values of the independent variables; and X and Y are the means of the
independent and dependent variables, respectively.

As an example, Table 1.8 shows the steps for calculating the values of a and
b to construct the trend line in a simple linear regression model. The resulting
regression model is .

§ = 18,977.96 + 205.25x.

The intercept is 18,977.96 and the slope is 205.25. With this model, we can calcu-
late a set of estimated values for the dependent variable using the values we have
for the independent variable. The results of this estimation are listed in Table 1.9.
As shown in this table, there are some deviations between the observed values
and the estimated values of the dependent variable. The deviations between the
observed and predicted values are known as residuals. 1deally, a perfect regres-
* sion model will have zero residuals. The larger the residuals, the less powerful
the regression model is. When the residuals are small, we typically say that the
regression line is a good fit.

Since regression models are not always equally powerful, how do we know
if a regression model is a good enough fit of the data? To answer this question,
we need to calculate a coefficient of determination, usually denoted as rZ. The
coefficient of determination is the ratio between the variance of the predicted
values of the dependent variable and the variance of the observed values of the
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TABLE 1.8 Data for Simple Linear Regression Model

1993 GDPin 1993 Expenditure on
Million ECU  Higher Education

Name y X x2 xy
North 38,4944 92.3 8,519.29 3,553,033.12
Yorkshire and 63,701.6 191.0 36,481.0 12,167,005.60
Humberside

East Midlands 52,937.1 155.1 24,056.01 8,210,544.21
East Anglia 29,552.9 188.5 35,532.25 5,570,721.65
South East 288,479.1 1,297.5 1,683,506.25 374,301,632.25
South West 62,739.0 123.1 15,153.61 7,723,170.90
West Midlands 67,161.5 142.3 20,249.29 9,557,081.45
North West 80,029.7 219.2 48,048.64  17,542,510.24
Wales 34,028.7 91.0 8,281.0 3,096,611.70
Scotland 69,601.0 ~~355.1 126,096.01  24,715,315.10
Northern Ireland 18,033.3 48.7 2,371.69 878,221.71

3y =1804,758.30 3y =2,903.80

n=10 n=10

Y =73,159.85 X =263.98

3 xy = 467,315,847.93 ¥ x2 = 2,008,295.04
_467,315,847.93 — 11(263.98)(73,159.85) _ 254,875,738.7
= 72.008,205.04 — (11)(263.98)(263.98) 1,241,755.2

a = 73,159.85 — (205.5)(263.98) = 18,977.96
$ = 18,977.96 + 205.25x

=205.25

dependent variable. Specifically, the coefficient of determination can be calculated
as

S5
where 2 is the variance of the predicted values of the dependent variable, also
known as regression variance, and SJ% is the variance of the observed values of the
dependent variable, also known as total variance.

In the lower part of Table 1.9, the coefficient of determination is calculated as
2 = (0.9799. Converting this ratio to a percentage, we can say that 97.99% of the
variance of the dependent variable is accounted for or captured by the regression.
Consequently, the higher the r? value is, the better the regression model’s fit to
the data values. Also note that the square root of the coefficient of determination
is r, which is the Pearson’s product-moment correlation coefficient discussed in
the previous section.
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TABLE 1.9 Regression Model: Observed Values, Predicted Values, and Residuals

Observed Predicted Residuals

Regions x ¥ B y—¥

North 92.3 38,494 .4 39,722.54 —1,228.14
Yorkshire and 191.0 63,701.6 58,180.71 5,520.89

Humberside

East Midlands 155.1 52,937.1 50,812.24 2,124.87
East Anglia 188.5 29,552.9 57,667.59 —28,114.69
South East 1,297.5 288,479.1 285,289.84 3,189.26
South West 123.1 62,739.0 44,244 .24 18,494.77
West Midlands 142.3 67,161.5 48,185.04 18,976.47
North West 219.2 80,029.7 63,968.76 16,060.94
Wales 91.0 34,028.7 37,655.71 —3,627.01
Scotland 355.1 69,601.0 91,862.24 —22,261.24
Northern Ireland 48.7 18,033.3 28,973.64 —10,940.34

3 y? =1.13615 x 10!
¥ 92 = 1.11328 x 10!

. 2
Total variance: S2 = Z—y = 1.0329 x 1010
n

¥

52
Regression variance: SJ% = &_ =1.0121 x 10'°
n

Coefficient of determination: r2 =

1.0121 x 101°
1.0329 x 1010

= 0.9799

Figure 1.11a  The bivariate regression menu item.




