Notes by Jeff Shultz (c:\wou\envgeo\wangtalk.doc)

Dr. Zhenming Wang /DOGAMI

Earthquake Hazard and Mitigation in Oregon

Concentrated on Western Oregon - nobody lives in Eastern Oregon

Abbreviations: SJF - San Juan de Fuca

NA - North American

EQ - Earthquake

- Tectonic Setting and Earthquake
 - Earthquake source Zones, in the Pacific NW.
 - SJF plate subducting under NA Plates
 - 3 types earthquake
 - Interplate subduction: earthquake 8-9 Richter
 - Intraplate Earthquake up to 7.5 (inside of SJF plate) (no history in Oregon)
 - seen in Puget Sound, severe damage to Seattle/Tacoma
 - Crustal Earthquake to 6.5 (under our feet)
 - Portland Earthquake Sources (Triple Threat)
 - Upper plate (NA) Moderate magnitude Lower plate (SJF) large magnitude Subduction – locked subduction zones Fault zones around Portland (a map)
- Earthquake Hazards
 - Ground Motion (Shaking Hazard)
 - 90% damage caused by ground shaking
 - Willamette HS. (Eugene) took major damage to brick buildings in 1993 Spring Break EQ. (photo of damaged brick building)
 - Had to retrofit Capitol Dome for damage in that EQ.
 - Capitol Building location of State Governor, Senate, House nothing like slapping a politician in the face with a wet fish to get his attention.
 - Major policy changes came out of that EQ.
 - Liquefaction Hazard
 - always happens during major earthquakes
 - buildings on soil that liquefies, fall over (Taiwan photo).
 - Lateral spreading (this is when Tammy came in the room) everything pulls apart.
 - Landslide Hazard
 - induced by ground shaking
 - sides of hills sunk (photos of Loma Prieta CA coast, Taiwanese hills)
 - '65 Olympia railroad embankments collapsed
 - steep slopes fail in land and rockslides. Road cuts are very vulnerable.
 - Tsunami Hazard (Coast)
 - "Tidal Wave"
 - Secondary Hazard
 - Fire
 - think of all the natural gas pipelines busted...
 - Hazmat leakage
- Earthquake Hazard Mapping
 - We aren't in California it can happen here, but awareness isn't there.

- Geology/Geotechnical engineering combines to create hazard maps
- Areas that will get hit hard can be mitigated prior to event
- We saw these maps in class Tuesday
- Ground Shaking Mapping
 - General Ground Shaking Hazard (ground motion on bedrock from all seismic sources)
 - Probabilistic Method building codes set on this
 - Deterministic Method used on critical structures to determine max ground shaking hazard would occur.
 - Maps show the recurrence intervals in "probability"
 - Highest ground shaking hazard is on coast due to subduction EQ's..
 - 500 year recurrence interval... Willamette Valley is about 50% curve
 - Monmouth is at 20-25% on 500 year
 - Relative Seismic Hazards Maps
 - Composite maps "relative sense of hazard"
 - Amplification
 - Soil Characterization (SPT, S-wave velocity and thickness)
 - Ground shaking hazard
 - Liquefaction
 - Soil Characterization (SPT, S-wave velocity and thickness)
 - Sandy soil?
 - Induced Landslide
 - Soil and Rock Characterization (cohesion, friction angle, degree of weathering, fracture
 - slope failure potential
- Liquefaction potential mapping
 - Soil Characterization (SPT, S-wave velocity and thickness)
 - Sandy soil?
- Landslide mapping
 - Soil and Rock Characterization (cohesion, friction angle, degree of weathering, fracture)
 - slope failure potential
- Tsunami inundation mapping
 - combination of theoretical model and study of past tsunami's.
 - Look at ground contour
 - Seaside will be underwater... temporarily.
- Earthquake Hazard Mitigation
 - Public Awareness
 - We've got the potential, prepare for it
 - Legislation
 - Building Code
 - UBC 97 good building code, very advanced compared to other states.
 - Regulation
 - Education
 - Mandatory Tsunami drills on a yearly basis at schools in hazard zone
 - Retrofit/Rehabilitation
 - Campbell Hall "shock absorbers"
 - Insurance
 - It's available, get it.
 - In Portland, ~30% families have it.
 - Emergency Planning and Response
 - use the info we have.

- WOU, Monmouth, Independence Earthquake Hazard map specific to this area.
 - >1000 students in dorms: Butler, Campus Estates...etc..
 - This guy was on the team that made the hazard assessment
 - Stuff is in GIS 3D modeling GET THIS!!!
 - Combined 3 layers of hazard, assigned numeric hazard assessment.
 - Very general assessment, without specific threats.
 - 1st layer Ground Motion & Amplification
 - Willamette Silt is what we sit on.
 - 2nd Layer Liquefaction
 - moderate to low hazard with Willamette Silt (rather surprising)
 - 3rd Layer Landslides
 - It's flat here.
 - Campbell Hall
 - Seismic retrofit base isolation
 - Otherwise, brick is a concern

Base isolation -

when ground shakes, so does building. Base isolation lets the shock absorbers shake instead.

Hazard here:

Ground shaking: Moderate (D type soil 1.5-1.8 on UBC)

Liquefaction: Moderate (fine-grained Willamette Silt, water close to surface)

Too flat for landslide problems.

Intraplate EQ's - why not? We don't have a record, or activity that showed it.