Chapter 4

Stability of Rock Slopes

4.1 Non-Engineered Slopes

The Earth’s solid surface is not everywhere flat. Hills, mountains, and valleys, for example,
are local features that incorporate hilly topography. The ever-present force of gravity, acting
on material resting on an inclined surface, tends to induce landslides, rock slides, avalanches,
etc. These events present immediate hazards to nearby life and property. Hence, it is usually
a serious concern to see to it that a local arrangement of earth materials on a slope does not
pass from a static to a dynamic state. Engineering intervention may be necessary if the risk
of sliding is significant. Just how to assess this risk, and then to reduce it, is the theme of
this chapter.

Examine, then, a block of intact rock resting on an inclined surface or slope. Intact rock
means that the rock has the strength to resist rupture under the applied forces, and that if
these forces set the block in motion, the rock will slide, or at least begin to slide, as a single
entity or block. It is assumed that there is no rock mass immediately downslope from the
block to prevent sliding (the block daylights into free space).

/

Fig.(4.1) Block on Slope

In Fig.(4.1) a block of rock is shown resting on a slope. This sketch is an idealization of
an actual field situation; for example, the actual block may not be a perfectly rectangular
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solid in shape, and there may be other blocks of rock in close proximity upslope, or to the
sides. It is also assumed that the slope itself is an intact block, and that all the rock is dry.

The block is at rest. The immediate query is: How stable is the block in this position?

Can the possibility of the block sliding at some time in the future be quantitatively evaluated?
, To answer these questions, it is necessary to examine the forces acting on the block.
L These forces are conveniently divided into two groups: driving forces, forces tending to move
the block down the plane, and resisting forces, forces tending to hold the block in place.
i Begin with the driving forces. One driving force that is always present, as already
mentioned, is the force of gravity due to the Earth (minus the block); this force is represented
by the weight W of the block. It is not feasible to measure W directly by placing the block
on a scale, but the weight can be calculated if the mass density p and volume V of the block
can be ascertained. The density could be found by chipping off a representative piece of the
block of manageable size, and then finding the volume and density as indicated in Chapter
1. The weight itself is found either from W = pgV or, using the unit weight «y instead of p,
from W = +V.

The weight force acts at the center of gravity of the block and is directed vertically down.
For a uniform rectangular block, the center of gravity is at the middle of the block, i.e., at
the point where the body diagonals intersect. For other shapes, the location of the center of
| gravity may be more difficult to find.

Fig.(4.2) Driving Forces

The weight force is shown on Fig.(4.2). Only the component W sin a, however, is directed
L down the slope. The angle « is the angle made by the inclined surface of the slope with
¥ the horizontal. As shown on Fig.(4.2), it may be thought of as an elevation angle above the
i
|

- horizontal, or as a dip angle below the horizontal.

‘i ‘ Gravity cannot be “switched-off”, so the W sin o driving force is ever present. But there
may, or may not, be other driving forces acting. For instance, although for clarity the block
is drawn as an isolated entity on the slope, it may in fact be separated from an uphill
block only by a narrow fracture, or joint. If the fracture is empty, no other driving force
is produced. But if water seeps into the joint, an additional driving force can be generated
in several ways. First, there is the hydrostatic force itself. Second, if the water freezes, the
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accompanying expansion produces strong forces that will be exerted on the rock adjacent
to the joint. Third, even if the water does not freeze, it can still expand if the temperature
rises (thermal expansion). If the water is confined, the forces produced will act to split the
rock even more.

The sum of these driving forces other than gravity is represented by the symbol Fex, for
extra driving force. Also, to keep the analysis relatively simple, it is presumed that Fey is
directed parallel to, and down, the slope; see Fig.(4.2). Under these conditions, the total
driving force DF' (single symbol) is given by

DF = Wsina + Fey. (4.1)

Turn now to resisting forces. The first of these to be considered is the force of static
friction f,. This is the familiar force that resists the start of sliding of an object over a
surface on which the object is initially at rest, but on which an external force is acting so as
to induce sliding. The numerical value of f, on such an object that nevertheless remains at
rest is precisely the value that makes the net force on the object equal to zero, in accordance
with Newton’s second law (F = ma with a = 0). If the magnitude of the external force is
increased, the value of f; will also increase to keep the net force equal to zero, and thereby
maintain the object at rest.

But the value of f, cannot increase forever: there is an upper limit to the magnitude of
the friction force. Experiments show that this maximum possible value of the friction force,
fomax, in any particular situation, is given by Coulomb’s law:

fs,max = ,Ust- (42)

On the right-hand side of Eq.(4.2), u, is the coefficient of static friction. This is a dimen-
sionless number, the numerical value depending on the composition and condition of the
two surfaces that are in contact. The R in Eq.(4.2) is the sum of the normal forces on
the object. (The word normal is not used as the opposite to abnormal, but rather means
perpendicular.) A normal force is a force on the object that is directed perpendicular to the
surface of contact.

Sometimes, in place of the coefficient of friction y,, an angle of friction ¢ is employed.
The angle of friction is related to the coefficient of friction by

tan ¢ = us. (4.3)

The choice of using either ¢ or p, in the treatment of friction is entirely personal preference.
If ¢ is employed, then Eq.(4.2) becomes

fo,max = Rtan . (4.4)

Regardless of whether ¢ or p, is used, if the value of f; needed to keep the object at rest
comes to exceed f; max, sliding will occur.
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Now apply these considerations to the block of rock on the slope. Under the conditions
so far specified, the normal force R must equal the component of the force of gravity that
acts normal to the slope, for there is no acceleration normal to the slope, even if the block
slides. From Fig.(4.2), it is evident that this component is W cos . Hence,

fomax = W cosatan ¢. (4.5)
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EXAMPLE 1 With only friction acting as the resisting force, angle of friction ¢, and no extra
driving force present, find the angle of the steepest slope on which the block can remain at
rest.

The driving force is DF = W sin a and the resisting force is fs. If the block remains at rest,
then

YF =0,
Wsina— f, =0,
Wsina = fs.

Now W sin « is larger in value for steeper slopes, since a is greater. Therefore, to keep the
block at rest on steeper slopes, f. must be larger also. The steepest slope on which the block
can remain at rest is that for which f, has increased to its maximum possible value fs max-
By Eq.(4.5), for this steepest slope, the last equation gives

W sin Qpax = W €OS Qmax tan @.

Divide this equation (both sides, of course) by cos omax. But, for any angle 0, sinf/cos@ =
tan 0. Hence, the equation reduces to

tan omax = tan @,

amm<::¢-

This result provides a physical interpretation to the angle of friction ¢. With only friction
acting as a resisting force, and no driving force present except gravity, ¢ equals the elevation
angle of the steepest slope on which the block can remain at rest. This greatest slope angle
for the block to be at rest is sometimes called the angle of repose, especially if the block and
slope are made of the same material.
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Another resisting force that occurs naturally in rocks (and soils) is the cohesion force
F.o. The force of cohesion is a resisting force the value of which is independent of the value
of the normal force R. Unlike the friction force, the force of cohesion is directly proportional
to the area of contact A between the block and the slope. The force is written as

Fcoh - CA, (46)

where the constant of proportionality c is called the cohesion stress. Like ¢ (and i), the
numerical value of ¢ depends on the composition and condition of the two surfaces in contact.
The area A in Eq.(4.6) is shown shaded in Fig.(4.3). The direction of Feon is, like fs, parallel
to the slope and upward (opposite to the direction of the driving force W sin a), opposing
the tendency of the block to slide down under gravity.

Fig.(4.3) Contact Area

The forces of friction and of cohesion are naturally occurring resisting forces. With both
acting, the total resisting force RFyqiing i8

RFcting = fs + cA. (4.7)
If the block remains at rest,
SF =0,
DF — RF,cting = 0,
RPFocting = DF, (4.8)

in accordance with Newton’s second law LF = ma, with a = 0 for a system that remains at
rest.

Now suppose that in Eq.(4.7) the acting friction force f, is replaced with Jfe,max, the
maximum possible value of f,. Then Eq.(4.7) yields the largest possible value of the total
resisting force; this maximum value is given the symbol RF’; that is,

RF = fymax + ¢, (4.9)
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RF =W cosatan¢ + cA, (4.10)

the last step by Eq.(4.5).
The ratio of the maximum possible value of the total resisting force to the driving force
is called the factor of safety against sliding, symbol F'S; that is,

RF
S =—. 4.11
FS= 5% (4.11)
Substituting Eqgs.(4.1) and (4.10) into Eq.(4.11) yields

S Wcosatanqﬁ—l—cA'

(4.12)

Wsina + Fext

Fig.(4.4) House at Risk

The numerical value of the factor of safety indicates how safe the block is against the
tendency to slide down the slope. For example, suppose that the purchase of the house
shown in Fig.(4.4) is being contemplated; i.e., a house located at the bottom of a hill, say,
on which a slab of rock is resting. The builder, or real estate agent, imply that there is
no need to worry about the slab suddenly sliding down the hill into the house, because the
factor of safety, calculated by Eq.(4.12), has the value 1.12. This means that the maximum
available resisting force RF has the value RF = 1.12(DF’). For the slab to remain at rest,
it is only necessary that RF = 1.00(DF), or F'S = 1. It seems that there is 0.12(RF’) of
“extra” resisting force, and so no concern need be felt about the presence of the slab lurking
uphill.

However, bear in mind that the values of some of the terms in Eq.(4.12) can vary in the
course of time, sometimes in very little time. For instance, if the ground becomes saturated
with water, the values of tan ¢ and c can decrease considerably, lowering the value of RF. If
an uphill tension crack forms and fills with water which later freezes, an extra driving force
is produced, increasing the value of DF'. Both of these events force the factor of safety to
smaller values. As soon as F'S diminishes to F'S = 1, the slab will slide on the slightest
disturbance. The fact that this has not yet happened may not be a reason for complacency.
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EXAMPLE 2 A rectangular block of rock, density 2.90 g/cm® and edge lengths 17.0 m, 2.30
m, 8.47 m, rests on a 16.0° incline, as shown in Fig.(4.5). An extra driving force of 734 kN,
acting parallel to and down the incline, will just start the block sliding. The angle of friction
between block and incline is 7.00°. Find the cohesion stress on the block.

Fig.(4.5) Example 2

The weight of the block is calculated from
W =pVyg
Hence,

W = (2900 kg/m®)[(17 m)(8.47 m)(2.3 m)](9.8 m/s?),
W =9.412 X 10° N.

From Fig.(4.5), the area of contact A between block and slope is seen to be

A = (17 m)(8.47 m),
A = 144.0 m?.

With the extra driving force, the block just starts sliding; this implies that F'S = 1. Use
Eq.(4.12), with all quantities in SI base units, to get

S - Wcos.atan¢+cA,
Wisina + Fy

(9.412 X 108 N) cos 16° tan 7° + ¢(144 m?)
(9.412 X 106 N)sin16° + 734 X 103 N’
c = 15.4 kPa.
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4.2 Slope Stress

The condition for stability on a non-engineered slope with no extra driving force, as expressed
in Eq.(4.12) with Ferr = 0, often is written in terms of stresses rather than forces. To do
this, set Feyr = 0 and divide numerator and denominator by the contact area A, to obtain

(W cosa/A)tang + ¢

F5= (W sina/A)

Since all of the forces in Eq.(4.12), the resisting forces of friction and cohesion and the
driving force due to gravity, act parallel to the incline, and hence to the contact area A, the
associated stresses are shear stresses, so that the factor of safety can be expressed as

FS =2
D

where T is the total resistive shear stress and 7p is the driving shear stress. There is a
compressive stress o acting across the contact area on the block: it is due to the reaction of
the slope surface to the component of the weight perpendicular to the surface, i.e., it is due
to the normal force. Since this normal force is W cos a the compressive stress, in magnitude,
is

o =W cosa/A.

Tt follows that the values of the shear stresses 7 and Tp are related to that of the compressive
stress:

TR = O tan¢ +c,
T = o tana.

(The last equation follows by noting that tan o = sino / cos a.) Hence, in terms of stress,

_otang+c
~  otana

FS (4.13)

If ¢ = 0 (no cohesion, or cohesion ignored), the factor of safety and the angles of the slope
and of friction are related by

FS<1lif¢<aq,
FS=1if ¢ =q,
FS>1if¢>a.

The situation with ¢ # 0 is sometimes presented graphically. In Fig.(4.6), the shear
stresses g and Tp are plotted on the ordinate (the “y axis”) and the compressive stress o
on the abscissa (the “z axis”). The driving shear stress plots as a straight line through the




4.3. ENGINEERED SLOPES 83

origin with slope a, and the resisting shear stress plots as a straight line with o-intercept ¢
and slope ¢.

A—>
—

cleT 0 PS> 1 | FS < 1

0—

Fig.(4.6) Stresses on a Non-Engineered Slope

Figure (4.6) is drawn with ¢ < a. (The situation with ¢ > a always gives F'S > 1.) The two
lines representing the shear stresses intersect at a value of the compressive stress labelled o7.
For configurations with ¢ < o1, F'S > 1 and for ¢ > 07, F'S < 1.

In evaluating the utility of Fig.(4.6), it should be borne in mind that o hides a dependence
on the angle of dip a (¢ = W cos a/A), so that Eq.(4.13), on which Fig.(4.6) is based, does
not explicitly display all the dependence of F'S on a. For this reason, it seems more clear-cut
to evaluate the factor of safety in terms of forces, as is done in Eq.(4.12).

4.3 Engineered Slopes

Suppose that the factor of safety, calculated from Eq.(4.12), is not sufficiently large to provide
confidence that the block will not slip under conditions that are expected to vary. Then it
may be necessary to stabilize the block by some engineering expedient, and thereby avoid
having to rely completely on the naturally occurring resisting forces. Two related stabilizing
techniques are analyzed in this section.

The first of these techniques is the installation of rock bolts. Rock bolts are solid rods,
usually of steel, driven through the block into the slope. They are generally installed at 90°
to the slope. This means that if the block tries to slide, it will exert a force on the bolt that
is parallel to a cross section of the bolt. By Newton’s third law, the bolt exerts an equal and
opposite force on the block. This force will also be parallel to a cross section of the bolt and
therefore is a shear force. The force acts to resist the sliding of the block.

——



84 CHAPTER 4. STABILITY OF ROCK SLOPES

The largest possible value Fy of this force exerted by the bolt on the block is given by
FB = TBAB, (414)

where 7 is the shear strength of the material of which the bolt is made, and Ag is the
cross-sectional area of the bolt. As described in Chapter 2, the shear strength represents the
greatest shear stress that can be applied, in this case to the bolt, without causing the bolt
to lose all meaningfull resistance to the applied shear force. If identical bolts are installed,
the net effect is to add nFy to the resisting force RF' in Eq.(4.10).

bearing
plate

SLOPE

cement

anchor

Fig.(4.7) Installed Rock Bolt

If the base of the bolt is cemented into the slope, then the bolt can be tightened. This
action squeezes the block and slope together. Since each bolt is installed perpendicular to
the slope, the force exerted due to the tightening is also perpendicular, or normal to, the
slope. Call this force Rp, the normal force each tightened bolt exerts on the block. This
force can be expressed as

RB = O'BAB, (415)

where og is the stress on the bolt due to the tightening and, as before, Ag is the cross-
sectional area of the bolt. On the bolt, the stress is one of axial tension, since the block and
slope want to “spring apart”, and the tightened bolt resists this. Hence, the bolt cannot be
tightened beyond the tensile strength of the bolt material.

The force Rg itself is not a resisting force on the block, since it is exerted normal to
the slope. The effect of Rp is to increase the normal force and therefore to increase the
maximum friction force available. By Eq.(4.2), fomax = #sR. The part of R due to gravity,
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W cos « is always present. If there are n bolts, all tightened to the same tension, then the
total normal force becomes

R=Wcosa+nRg. (4.16)
Hence,
fs,ma.x = MS(W cosa + TI,RB),
or

fo,max = (W cos o + nRg) tan ¢. (4.17)

Therefore, by Eqs.(4.14), (4.15), and (4.17), the maximum resisting force available with n
rock bolts installed perpendicular to the slope is

RF = (W cosa + nogAg)tan ¢ + cA + ntgAg. (4.18)

It is assumed that the bolts are identical and that all have been tightened to the same
tension og. The driving force on the block is unaffected by the rock bolts. Combining the
last equation with Eqgs(4.1) and (4.11) gives for the factor of safety

(W cosa + nogAg)tan ¢ + cA + n1gAp

FS =
Wsina—l—Fext

(4.19)

Often in engineering situations, it is important to know the number of bolts needed to
achieve a desired factor of safety. With this in mind, Eq.(4.19) can be solved for n with the
result

FS(Wsina + Fe) — Weosatang — cA
AB(UB tan¢ -4 TB) )
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n =

(4.20)

EXAMPLE 3

Fig.(4.8) Example 3

The slab shown in Fig.(4.8) has a width of 13 m; its density is 3.2 g/cm®. The angle of
friction between the slab and the slope is 20° and cohesion equals 75 kN/m?. Rock bolts are
installed but not tightened. Each bolt has an area of 6.2 cm? and shear strength 740 MPa.
A factor of safety of 3.0 is desired. How many rock bolts are needed?
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Calculate the weight of the slab from W = pVg; the result is W = 62.2 MN. The angle
of friction is ¢ = 20° and the angle of the slope, from Fig.(4.8) is @ = 26°. With cohesion
present, ¢ = 75 X 10® N/m?, the contact area between slab and slope must be calculated.
This area is A = (61 m)(13 m), A =793 m?. Since the bolts are not tightened, op = 0. The
bolt cross-sectional area is Ag =62X 104 m? and their shear strength is 78 = 740 X 108
Pa. (The SI prefixes cannot be overlooked.) Write Eq. (4.20) with og =0, and also with Fext
= 0, since no extra driving force is mentioned. Using SI base units, then, and with F’ S =3,
the result is

_ W|(FS)sina — cos a tan @] — cA

ApTs ’

"= (62.2 X 10° N)(3 sin 26° — cos 26° tan 20°) — (75 X 10° Pa)(793 m?)
- (6.2 X 10-% m?)(740 X 10° ) ’
n = 4.3.

Of course, there cannot be 4.3 identical bolts. Suppose that “safety first” is the work
philosophy; then install n = 5 bolts.

****************************************

Another method to prevent sliding is to stitch the block to the slope. The technique is
similar to the use of rock bolts. A hole is drilled through the block perpendicular to, and
into, the slope. Some cement is poured into the bottom of the hole. Then, instead of a bolt,
a cable is inserted. One end of the cable is secured by the cement, when hardened. At the
outer surface of the block, a cap and nut secure the other end of the cable. The nut is then
tightened.

When the cable is tightened, the block and slope are pulled together. Hence, the effect is
the same as tightening a rock bolt. However, a cable, being flexible, is presumed to offer no
shearing resistance to the block. If the cable bends after installation, then the block must
have moved and this indicates sliding.

The formula for the factor of safety in stitching can be derived from the correspondilig
formula for rock bolts, Eq.(4.19) by: (i) replacing os, bolt tension, with og, cable tension;
(1) replacing Ag, bolt cross-sectional area, with Ag, cable cross-sectional area; (iit) deleting
the term nrgAg. Hence, with n identical stitches, each tightened to tension o¢, the factor
of safety against sliding is given by

_ (Weosa + nocAc)tané + cA

FS= W sin & + Fexs (421)

****************************************

EXAMPLE 4

A rectangular block of rock is stitched to a 27.0°-slope. The block has unit weight 30.4
kN/m® and edge lengths 10.8 m, 12.6 m, 9.10 m. The angle of friction between block and
slope is 18.0°. Ignore cohesion. The stitching cable has cross-sectional area 7.50 cm? and
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is tightened to tension 620 MPa. (a) How many stitches are needed to provide a factor of
safety against sliding equal to 2.007 (b) With the stitches installed, find the smallest extra
driving force that will cause the block to slip.

(a) The weight of the block is W = ~V, W = 8.687 MN. The angle of friction is ¢ = 18°
and the angle of the slope is @ = 27°. Since cohesion is to be ignored, set ¢ = 0. The tension
in the cable is g = 620 MPa and the cable area is Ac = 7.5 X 107* m?%. No extra driving
force is mentioned in this part, so put F = 0. Also, F'S = 2. Use Eq.(4.21) to find

FS— [W cos a + nocAc] tan ¢
W sin a '

" Substitute the data (in SI base units, of course):

[(8.687 MN) cos 27° + n(620 MPa)(7.5 X 10* m?)] tan 18°

2 =
(8.687 MN) sin 27°

Solve for n. Note that since Pa = N/m?, then MPa = MN/m?. The result is n = 35.56, so
that, practically speaking, n = 36.

(b) With the stitches installed, put n = 36. To find the smallest extra driving force needed
to cause slipping, set F'S = 1. In this part, F'S # 0, but ¢ = 0 still. Eq.(4.21) now yields

[W cosa + nocAc) tan ¢
W Sin [0 + Fext ’

[(8.687 MN) cos 27° + (36)(620 MPa)(7.5 X 10~% m?)] tan 18°
(8.687 MN) sin 27° + Foe ’

Fot = 4.01 MN.
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4.4 Roadcuts

In the discussion so far, the block has been drawn as a rectangular solid in shape. However,
nature seldom forms blocks of rock with such a simple shape. Also, engineering projects
often create blocks of a more irregular shape.

For example, suppose that a road under construction must pass for part of its length
through hilly or mountainous terrain. Figure (4.9a) shows a cross section of part of a
mountain before excavation of the road. The hillside is composed of sedimentary rock.
Sedimentary rock often forms in parallel layers (beds). The planes of demarcation between
contiguous beds are notoriously weak in resisting driving forces that induce sliding. The
planes could also represent a system of joints in other kinds of rock. In any event, in
Fig.(4.9a), the layers of rock are inclined at angle o with the horizontal and dip directly



88 CHAPTER 4. STABILITY OF ROCK SLOPES

toward the projected roadway. Any one of these planes separating layers of rock is potentially
a plane along which a block (the rock above the plane) can slide.

(a)

(b)
Fig.(4.9) Roadcut

In Fig.(4.9b) the hill is shown with the section that must make way for the road removed.
The cut AB is made at an angle 8 (8 > a) with the horizontal. Only one of the weak bedding
planes along which sliding is possible is shown. Specifically, this is the plane with its lower
edge through A at the road. It is assumed, however, that the road exerts no supporting force
on the block at its toe at A. The top of the hill is horizontal.

Of course, Fig.(4.9) is a cross section of a three-dimensional construction:' the road
extends for a length L perpendicular to the page. The bedding planes also are perpendicular
to the page.

The geometry of the roadcut affects the analysis of slope stability only through the
calculation of the weight of the block. The weight is given either by W = pVg or from
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W = V. Previously, the block volume V is calculated as the product of the three edge
lengths of the block. However, the block in Fig.(4.9) is not rectangular. Rather, it is a
cylinder of length L and triangular cross section ABC.

The volume of a cylinder is the product of the length and the cross-sectional area. There-
fore, if A, is the area of the triangle ABC, then

V = A,L, (4.22)

where the area A, is to be expressed in terms of the height H of the hill, the angle « of the
plane and the angle 3 of the cut.
Write a for the distance AB and b for the distance AC. The area of triangle ABC is

Ay = %bh, (4.23)

where h = BD is the “height” of the triangle perpendicular to “base” AC. Now

il
b ’
H

sina’

sino =

b= (4.24)

Similarly,
H

T sng

a (4.25)

From triangle ABC and Eq.(4.25),

g ) = -

H
sin
Substituting Eqs.(4.24) and (4.26) into Eq.(4.23) gives for the area

1 H H
2 ][sinﬁ

1 (sinﬂcosa—cosﬁsina)
)

_ Zgy2
Az 2H sina sin 3

h=( )sin(f8 — a). (4.26)

Sin(ﬁ - a)]a

2'sin

Ay = %H2(cota —cot ).

With the volume of the block given by Eq.(4.22), V = A, L, the weight of the block is

W= p(Aa:L)g’

B
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W = %pLHzg(cot o — cot ). (4.27)

If cohesion must be accounted for, then an expression is needed for the contact area. By
Eq.(4.24), this is

A=bL,

A= HLecsca. (4.28)

The length L may not be the complete length of the cut. The types of rock, the angle of
the bedding planes, and their orientation, may vary along the length of the cut. In that case,
the length L is the length of an intact block along which these parameters do not change
significantly.

It may appear that the block ABC cannot slide, as it seems to be held in place against the
roadway at A. But it must be remembered that Fig.(4.9) is an idealization, or approxima-
tion, to the actual situation. The block is not perfectly triangular in outline, with absolutely
straight edges; A, B, and C are not really mathematical points. The rock mass probably con-
tains many other fractures that will yield if sliding begins. In short, it cannot be considered
that the block is geometrically “locked in” at A.

Also, sliding could begin along any of the other bedding planes shown on Fig.(4.9a), for
which the associated block “daylights into free space”; there is nothing, even in the idealized
construction discussed, to prevent a slide if F'S < 1. Equations (4.27) and (4.28) can be
used for such a block, once the new vertical thickness H of the block is evaluated.

To find a convenient formula for the factor of safety for a non-engineered roadcut, with
no extra driving force, in terms of the angles rather than the weight of the block, substitute
Eq.(4.27) and (4.28) into Eq.(4.12) to obtain

tan ¢ 2c 1
FS = . 4.29
tan o + <ng) sin® a[cot a — cot O] ( , )

Now tan ¢/ tan « is the value of the factor of safety if c = 0; i.e., either if there is no cohesion
or cohesion is to be ignored. See Eq.(4.12). Call this value of the factor of safety F'So:

tan ¢
S = . 4.30
Fio tana ( )
Also, define a quantity B by
c
_ ) 4.31
spgH 430

The quantity B is the ratio of the cohesion stress to the vertical stress at one-half the greatest
depth in the block; B is dimensionless. With these substitutions, Eq.(4.29) becomes

FS = FS + B

(4.32)

sin? afcot @ — cot 8]
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Sometimes it is usefull to calculate, before making a cut, just what angle of cut is needed to
achieve a desired factor of safety. For this purpose, Eq.(4.32) can be rearranged to read

B

8 =cota —
cotff = cot (AFS)sin® o’

(4.33)

where

AFS = FS — FS,, (4.34)

F'S being the factor of safety desired with cohesion taken into account. If the slope is
stabilized with rock bolts or stitches, then Eqgs.(4.27) and (4.28) must be substituted into
the appropriate equation for the factor of safety of the engineered slope.
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EXAMPLE 5

For a roadcut like that shown in Fig.(4.9), the vertical thickness of the hill is 16.5 m and
the dip angle of the bedding plane is 35.0°. The angle of friction is 31.0° and the cohesion
stress equals 38.4 kPa. The unit weight of the rock is 23.7 kPa/m. Find the factor of safety
for a vertical cut.

The data are: H = 16.5 m, o = 35.0°, ¢ = 31.0°, ¢ = 384 kPa, v = 23.7 kPa/m. For a
vertical cut, B = 90°, cot 8 = 0. First, calculate the quantity B; since v = pg, Eq.(4.31)

yields
2

=
B 2(38.4 kPa)
~ (23.7 kPa/m)(16.5 m)’

B = 0.1964.
If cohesion was zero, the factor of safety, by Eq.(4.30), would be

B

tan31°
Fbo = tan 35°’
FSy = 0.8581.
Equation (4.32) now yields
FS =0.8581 + 0.1964

sin? 35°[cot 35° — cot 90°]’
FS =1.28.
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This discussion on roadcuts assumes that the angle 3 of the cut is greater than the dip angle
a of the planes of potential slip. What about 8 < a? A sketch like Fig.(4.9) with 8 < «
shows that the block so formed cannot slide, as it is constrained by the horizontal ground
surface. This begs the question: Why not make all cuts with # < a? The figure shows that
this would require the removal of much larger amounts of material than in the case of 8> «a,
so that it may be simply impractical in terms of impact on the road environment.

4.5 Topples

The blocks whose stability with respect to sliding have been examined in the preceding sec-
tions possess one characteristic in common: they are much “longer” than they are “higher”.
This makes them relatively immune to “tipping over” or toppling. Contrast the two blocks
shown in Fig.(4.10). Block A will not tip, but block B might, even if sliding does not take
place.

Fig.(4.10) To Tip or Not

It is important to determine the conditions that lead to toppling; clearly it is hazardous
to be beneath a block of rock that is susceptible to such a maneuver, as it is to be down-slope
from a block of rock with an inclination to slide.

In the preceding sections, the conditions for sliding are analyzed by examining the forces
acting on the block, because sliding is a translational motion to which Newton’s laws of
motion apply.

Toppling is a rotational motion, and rotation is usually analyzed by applying Newton’s
Jaws as rewritten in the form convenient for rotational situations: that is, by considering the
torques acting on the object. A brief tutorial on torque follows.

See Fig.(4.11). A force F acting on an object at a point P exerts a torque 7 about origin
O, which lies at a perpendicular distance r from the line of action of F, with 7 given by

T =rF. (4.35)
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The symbol T is already used as the symbol for shear stress; it is also used here as the symbol
for torque because it is the symbol very commonly used in technical literature.

outline
of object F

Fig.(4.11) Definition of Torque.

The distance, or line, from O to the line of action of F, the line segment whose length
is 7, is called the lever arm or moment arm of the force F' about origin O. Torque, itself, is
sometimes referred to as moment.

The SI base units of torque are, as seen from Eq.(4.35), units of force times units of
distance; to wit, N-m. This combination is called a Joule (J) in the SI system. But the unit
Joule is generally not used with torque; rather, the unit for torque is generally written out
as N-m.

There is a sense (direction) associated with torque. In Fig.(4.11), the force F’, acting
alone at point P on the object, pivoted at O, tends to induce a rotation of the object in the
clockwise sense, as indicated by the arrow at O. Clockwise torques are taken as negative;
counterclockwise torques are positive.

Newton’s second law written for rotation reads

Yt = la, (4.36)

where a now is the angular acceleration of the object, I is its rotational inertia about an
axis through O, and T7 is the sum of all the torques acting on the object. In examining
the conditions for toppling, only the sense of the angular acceleration need be determined,
not its numerical value. Therefore, the numerical value of the rotational inertia will not be
needed.

To see how Eq.(4.36) is applied, consider the specific case of a uniform, rectangular block
of rock on a slope of inclination angle . (Since a numerical value of angular acceleration
will not be calculated, from this point on « will only be used for slope angle. Use of the same
symbol for different quantities is not uncommon in engineering writing.) It is assumed here,
as in all cases in this chapter, that the block is not susceptible to sliding before toppling.

The block has base length b, height A, and width w (dimension perpendicular to paper);
see Fig.(4.12). To see if the block will topple (i) suppose that it does topple, (i) draw
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the block slightly displaced toward toppling, (ii¢) examine the forces and their associated
torques, (iv) determine the sense of the net torque and therefore of the angular acceleration
induced, (v) see if the angular acceleration takes the block back to its original position.

Fig.(4.12) Block before Tipping.

The forces on the block are its weight W, acting vertically down from the center of gravity
cg of the block, the normal force R exerted by the slope, and the resisting forces of friction
fs and of cohesion cA. These are shown on Fig.(4.12).

In Fig.(4.13), the block is shown slightly tipped. Since it is presumed that the block does
not slide, the axis of rotation about which the block tips passes along the bottom front edge
O of the block. Since now there is only a very narrow region of contact between block and
slope, namely along the edge through O, the normal force R and the friction force f; must
act there. The cohesion force is proportional to the area of contact; since this area virtually
goes to zero in tipping, the cohesion force vanishes and therefore is not shown.

The lines of action of both R and f; pass through O; hence, each contributes zero torque
about O, for their lever arms are zero. The only force that does produce a torque is the
weight W, drawn vertically down from the center of gravity. The crucial question, then, is
just where, relative to O, the line of action of W passes. Two possible locations for the center
of gravity are shown on Fig.(4.13). For position 1, the weight W passes O on the “inside” of
the base of the block; this induces a clockwise torque which tends to return the block to its
original position. On the other hand, for a center of gravity in position 2, the line of action
of the weight W falls “outside” the base of the block; the associated torque about O tends
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to rotate the block farther away from its original position; i.e., it topples over.

Fig.(4.13) Tipping Block

The two factors that govern toppling, then, are the location of the center of gravity of
the block, and the value of the inclination angle of the slope. The steeper the slope the more
likely it is that the line of action of W will fall outside the block, indicating toppling. If the
line of action of the weight passes through O itself, then the angle of the slope is the largest
angle for which the block does not topple, or the smallest angle at which it does (there is no
practical difference between these two interpretations).

Figure (4.14) shows a rectangular block at this largest possible slope angle for which
toppling does not occur. The center of gravity of a uniform rectangular solid is at the
“center”; that is, at the intersection of the body diagonals. For a rectangular block, a line
normal to the surface (dashed line) is parallel to the sides of the block. This means that the
angle between W and the normal also is @, the slope’s dip angle. Therefore, the greatest
angle o consistent with stability against toppling is given from

tana = ZL/QQ’
b
tana = 7 (4.37)
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This equation applies for rectangular blocks. A different relation may hold for rocks of a
different shape.

Fig.(4.14) Block in Critical Condition
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EXAMPLE 6

Due to chemical weathering, a block of granitic rock has eroded to a uniform hemisphere
of radius 2.63 m. Find the elevation angle of the steepest slope on which it will not tip.
(Assume that the rock does not slide.) For a hemisphere of radius R, the center of gravity
is at a distance -g—R above the center of the base.

Fig.(4.15) Example 6
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Figure (4.15) shows the rock on the point of toppling, since the line of action of the weight
W passes through the lowest point on the base perimeter. The slope angle is given by

tana = 33,
iR

a = 69.4°.

Evidently, a very steep slope is needed to induce toppling. Unless the resisting forces of
friction and/or cohesion are exceptionally large, the “block” will slide on shallower slopes.
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4.6 Problems

1. The rectangular slab of rock of density 3.40 g/cm® shown in Fig.(4.16) has edge lengths
a=280m,b=19.0m, ¢c=3.60 m, and is resting on a 17.0°-incline. Ignore friction. The
slab will slide if it is disturbed even very slightly. Find the cohesion stress between slab and
incline.

Fig.(4.16) Problems 1 and 2

2. The slab shown in Fig.(4.16) has density 3.15 g/cm® and edge lengths a = 17.6 m, b =
9.30 m, ¢ = 1.80 m. The cohesion stress between the slab and the 21.0°-slope is 8.56 kN/m?.
Tests show that the slab will slide if disturbed in the slightest manner. Find the angle of
friction between slab and slope.

3. A rectangular block with dimensions 7.92 m, 4.81 m, 1.27 m has a unit weight of 26.4
kN/m3. It rests on an incline with elevation angle 22.5° with its shortest dimension perpen-
dicular to the incline. Cohesion between block and incline is 23.0 kN/m?2. Ignore friction.
Find the factor of safety against sliding.

4. A 17.0 m, 5.80 m, 2.40 m block with density 2600 kg/m® rests on an 18.0°-slope with
its shortest dimension normal to the slope. The angle of friction between block and slope is
12.0° and cohesion equals 17.0 kPa. (a) Find the factor of safety against sliding. (b) Find
the smallest extra driving force that will trigger sliding.

5. The weight of the slab shown in Fig.(4.17) is 22.3 MN. The angle of friction between slab
and slope is 8.50° and the factor of safety against sliding is 1.60. Find the force of cohesion
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between slab and slope.

Fig.(4.17) Problem 5

6. A slab of rock has edge lengths 8.30 m, 12.0 m, 1.92 m and a density of 2.96 g/cm?®. It sits
on a slope with its shortest dimension perpendicular to the slope. Between slab and slope
the coeflicient of friction equals 0.411 and the cohesion stress is 47.5 kPa. Tests show that
an extra driving force of 5.18 MN will just start the slab sliding. Find the dip angle of the
slope. (Hint: Write the equation for the factor of safety as a quadratic equation in cos @.)

7. A rock bolt has a cross-sectional area of 6.60 cm? and a shear strength of 450 MPa. What
shearing force will just rupture the bolt?

8. A block of rock, density 3270 kg/m?®, has edge lengths 14.6 m, 6.31 m, 7.20 m. It is to
be bolted to a vertical rock face with 25 identical, loosely-installed rock bolts. It is desired

that, if cohesion is ignored, the factor of safety will be 2.00. The bolts have a shear strength
of 633 MPa. Find the diameter of the bolts.

9. A slab of rock of mass 2.30 X 10° kg is to be bolted to a 31.0°-incline. Friction and
cohesion are to be ignored. Each rock bolt has area 4.80 cm? and shear strength 510 MPa.
Find the minimum number of loosely-installed rock bolts needed.

10. A rectangular block of rock with dimensions 1.22 m, 3.71 m, 1.83 m and of density 2.86
g/cm? is to be secured to a vertical rock face with a single rock bolt, as shown in Fig.(4.18).
The bolt has a shear strength of 340 MPa. The angle of friction is 25.0°; cohesion is to be

S
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ignored. The bolt is not tightened. Calculate the minimum diameter bolt needed.

Fig.(4.18) Problem 10

11. A slab resting on a 13.0°-incline has a weight of 48.8 MN. Workers have installed 17
identical rock bolts. Each bolt has a shear strength of 870 MPa and area 14.0 cm?. Ignore
friction and cohesion. The workers did not tighten the bolts. (a) Find the factor of safety
against sliding. (b) Find the minimum extra driving force that will cause the block to slip.

12. The slab shown in Fig.(4.19), mass 2.84 X 10° kg, will drop if the vertical joint ruptures.
The contact area is 38.0 m2. Between slab and cliff face the coefficient of friction is 0.300
| and cohesion 73.3 kPa. To keep the slab from dropping, stitches are installed. Each cable
| has area 8.42 cm? and is tightened to tension 410 MPa. How many stitches are needed to
get a factor of safety of 1.507

/ ( Fig.(4.19) Problem 12
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13. A slab with edge lengths 12.0 m, 59.5 m, 2.82 m rests on an incline with its shortest
dimension normal to the incline. The elevation angle of the slope is 28.5° and the density of
the slab is 3.16 g/cm®. The angle of friction between slab and incline is 18.0° and cohesion
equals 84.2 kN/m?. Rock bolts are installed but not tightened. Each bolt has an area of
7.30 cm? and shear strength 550 MPa. A factor of safety of 2.75 is desired. How many rock
bolts are needed?

14. A slab of rock sits on a rock surface that dips at 16.0°. The unit weight of the slab is
28.7 kN/m3, and its edge lengths are 17.4 m, 8.27 m, 5.58 m. It rests on one of its faces with
the largest surface area. The angle of friction is 11.2° and cohesion is 20.7 kPa. (a) How
many loosely-installed rock bolts are needed to get a factor of safety of at least 1.63?7 The
bolts have shear strength 474 MPa and area 7.30 cm?. (b) With the bolts installed, find the
extra driving force that will bring the slab to the verge of slipping.

15. A block of rock weighing 320 MN is to be bolted to a 19.0°-slope. The angle of friction is
14.0°; cohesion has been destroyed by nearby rock blasting. Rock bolts of area 9.34 cm? and
shear strength 472 MPa are installed. (@) How many bolts, not tightened, are needed for a
factor of safety of 1.20? (b) To what tension must the bolts in (a) be tightened to increase
the factor of safety by 0.2007

16. A rectangular slab of rock is to be secured to a 32.0°-incline by stitches. The slab of rock
has density 2700 kg/m® and edge lengths 1.80 m, 7.60 m, 8.20 m. The coefficient of friction
between slab and incline is 0.364. Ignore cohesion. The stitching cable has area 9.40 cm?
and is tightened to tension 320 MPa. (a) Find the minimum number of stitches needed. (b)
Suppose that nine stitches actually are installed. What is the factor of safety that results?

17. A block of rock with dimensions 28.0 m, 13.0 m, 5.30 m rests on a 24.0°-slope with its
shortest dimension normal to the slope. The density of the block is 2.90 g/ cm®. Between
slab and slope the cohesion stress equals 25.0 kPa and the coeflicient of friction is 0.250. A
factor of safety of 1.45 is needed. (a) If this is to be obtained with loosely-installed rock
bolts, how many are required? Each bolt has area 9.20 cm? and shear strength 760 MPa.
(b) The supplier is out of bolts, so the job must be done with stitches. The cable has area
5.30 cm? and each stitch is tightened to the tensile strength of 380 MPa. How many stitches
are needed?

18. Figure (4.20) shows the cross section of a road cut into the side of a mountain. The
line AA is a weak bedding plane along which sliding is possible. The block B, 18.6 m wide,
directly above a stretch of the road is separated from uphill rock by a tension crack T normal
to AA. The dip angle of the bedding plane is 19.2° and the coefficient of friction between
the block B and the bedding plane is 0.390. The density of the block is 2.88 g/ cm?®. Ignore

B
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cohesion. (a) Show that the block does not slide. (b) Water seeps into the tension crack and
freezes, exerting a driving force on the block. What value of this force will trigger a slide?

Fig.(4.20) Problem 18

19. A slab of weight 28.0 MN sits on a 23.0°-incline. The angle of friction between slab and
incline is 15.0°; cohesion equals zero. (@) How many tightened rock bolts are needed to get
a factor of safety of at least 1.507 The bolt specifications are: shear strength 230 MPa; area
5.80 cm?; tightened to tension 86.4 MPa. (b) Due to an oversight, only 20 of the needed
bolts actually are tightened; what is the real factor of safety?

20. Show that the extra driving force needed to trigger sliding of a block at rest is given by
Foxt = Wsin a(FSpctua — 1),

where F'S,cua is calculated with an integral number of bolts or stitches.

21. A block weighing 28.4 MN sits on a 19.0°-slope. The angle of friction is 13.0°. Cohesion
equals 430 kPa. Tests show that the factor of safety against sliding is 1.70. Find the contact
area betwen block and slope.

22. A block rests on a slope of dip angle a. The angle of friction is ¢. No engineering steps
have been taken to secure the block. Show that, if & > ¢, the smallest value of the cohesion
stress that keeps the block from sliding is given by

¢ = o(tana — tan ¢),
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where ¢ is the stress on the block due to the normal force.

23. Water just fills an isolated pore in a rock. Both the water and the rock are initially
at temperature 20°C, but the temperature soon rises to 30°C. Find the stress exerted by
the water on the rock due to the thermal expansion. The coeflicient of volume expansion of
water is 2.55 X 107% (C°)!, and of the rock is 4.80 X 10~° (C°)~L.

924. Suppose that in the roadcut of Fig.(4.9), the depth H is 14.6 m, the bedding angle 26.0°
and the cut angle 48.5°. The density of the rock is 2550 kg/m3. Due to heavy rain the block
slides on to the road surface over a 94.0 m length. How many metric tons of rock must be
removed to clear the roadway?

25. In Example 5, what angle of cut would yield a factor of safety of (a) 2.00, and (b) 3.00?

26. Sketch a graph of the factor of safety F'S versus roadcut angle 8 for the range 90° >
B > a. Pick values of ¢ and @, with ¢ < @, so that cohesion is necessary for stability. To
get a value of B, use ¢ & 300 kPa, v ~ 25 kPa/m and h ~ 10 m. A graphing calculator may
be handy, but not necessary.

27. A section of thruway is constructed through sandstone beds that dip at 41.5° directly
toward the thruway. A section of the roadcut, 19.2 m high, is made at an angle of 70.0°
to the horizontal. The angle of friction between the beds of the sandstone is 28.0°, and the
density of the rock is 2.24 g/cm® Tests show that the factor of safety of the slope thus
created is 1.35. Find the cohesion stress in the sandstone.

28. In the thruway roadcut of Problem 27, the factor of safety against sliding is 1.35. It
is thought wise to secure the slope with a sufficient number of rock bolts so as to increase
the factor of safety to 2.00. The bolts are standard steel rock bolts with diameter 2.54 cm
and shear strength 348 MPa. Due to a manufacturing defect, the bolts cannot be tightened.
How many bolts are needed for a roadcut 100 m long in the same kind of rock as described
in Problem 27?7

29. A 56.0°-roadcut is made in sedimentary rock. The bedding planes are parallel and evenly
spaced from, and including, the edge E of the block. See Fig.(4.21). The bedding planes dip
at 27.0°. Bedding plane I passes through the toe of the cut, just where you are standing.
The angle of friction between bedding planes is 20.0°. Tests show that the factor of safety
against the entire block sliding as a unit along plane I is 1.60. (a) Find the factor of safety
against sliding of the entire block above plane II along plane II. (b) Similarly, find the factor

)
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of safety against sliding of the block above plane III along plane III.

E TII II I

you

Fig.(4.21) Problem 29

30. A 57.0°-roadcut 11.2 m deep and 75.0 m long is made in granitic rock of density 2.77
g/cm3. A set of parallel joints in the rock dip at 43.5° directly toward the cut. Tests show
that cohesion equals 23.6 kPa and the angle of friction is 19.0°. (a) Find the factor of safety.
(b) How many stitches, each of diameter 2.34 cm and under tension 512 MPa, must be
installed to raise the factor of safety to 1.507

31. Which, if any, of the rectangular blocks in Fig.(4.22) will topple? Assume no sliding.

6.7 m

Fig.(4.22) Problem 31
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32. A block has the shape of a right-triangular prism, as shown on Fig.(4.23). The block
has height 13.0 m and is 11.0 m wide. It rests on a 35.0°-slope. Find the largest possible
value of the angle 8 of the block so that it will not topple. Assume no sliding.

Fig.(4.23) Problem 32




