ES473 Overview of Hydrogeologic Site Assessments and Remediation Studies

The following is an outline summary of reading review from the class web site:

Overview of Hydrogeologic Site Investigations

http://www.wou.edu/las/physci/taylor/g473/gwcont3.pdf

Groundwater Remediation Techniques

http://www.wou.edu/las/physci/taylor/g473/gwcont4.pdf

Use the outline below to read the above two web resources, and fill in the details of methodology included therein.

- I. Site Investigation
 - a. Geology
 - i. Stratigraphy
 - ii. Structure
 - iii. Materials
 - b. Hydrology
 - i. Climate
 - ii. Surface water
 - 1. Water budget
 - iii. Groundwater
 - 1. Aquifer model
 - c. Chemistry
 - i. Site History / Anthropogenic Impacts
 - 1. Land use
 - 2. Industrial history
 - ii. Geologic conditions
 - 1. Bedrock geochemistry
 - 2. Soils geochemistry
 - iii. Contamination Sources
 - 1. Chemical constituents
 - iv. Transport-Fate Pathways
- II. Hydrogeology
 - a. Hydrostratigraphic Model
 - i. Aquifer materials
 - ii. Aquitard/aquiclude materials
 - b. Aquifer Type(s)
 - i. Unconfined
 - ii. Confined
 - c. Aquifer Characterization
 - i. Permeability /porosity / hydraulic conductivity
 - ii. Thickness/aerial extent
 - d. Groundwater Flow
 - i. Groundwater maps
 - 1. Water table maps
 - 2. Confined potentiometric surfaces
 - ii. Groundwater flow directions
- III. Contaminant Pathways
 - a. Source delineation
 - i. Metals
 - ii. Organic compounds
 - 1. LNAPL
 - 2. DNAPL
 - iii. Volatile organic compounds

- 1. Flammable liquids
- iv. Free product
- b. Soil and Water Chemistry
 - i. Surface water (water sampling)
 - 1. Streams
 - 2. Storm water
 - ii. Groundwater (monitoring wells)
 - iii. Soils (test borings and sampling)
- c. Contamination Footprint / Contaminant Plume
 - i. Soil contamination zone(s)
 - ii. Groundwater contamination zone(s)
 - iii. Surface contamination zones(s)
- d. Contaminant Migration Pathways
 - i. Solids-liquids-gases
 - ii. Dissolved vs. non-dissolved states
 - iii. Transport rate
 - iv. Contaminate Fate (destination)
- IV. Risk Assessment
 - a. Ecosystem Services (plants, animals, watershed function)
 - b. Human Interaction/Land use / population studies / demographics
 - c. Toxicology / Health Risks
 - d. Risk/Probability Assessment
- V. Remediation Design and Planning
 - a. Source Removal
 - i. Contaminated soils and solids
 - ii. Source products, tanks, processes
 - b. Immobilization / Isolation of Contamination Zone from Ecosystem-Humans
 - i. Containment
 - 1. Liner systems-grout curtains-cement vaults
 - 2. Impermeable barriers and capping
 - ii. Hydraulic Controls
 - 1. Surface water diversion
 - 2. Groundwater flow alteration pumping-cone of depression
 - iii. In-situ encasement
 - 1. Concrete grout mixing and solidification
 - 2. Glass fusion / solidification
 - c. Mass reduction of contaminants / dilution
 - i. Bioremediation
 - ii. Pump and treat liquids wastewater treatment
 - iii. Vapor extraction
 - iv. Passive treatment
 - 1. Natural attenuation
- VI. Environmental Monitoring
 - a. Groundwater
 - i. Hydraulics
 - ii. Chemistry
 - b. Surface Water
 - i. Hydraulics
 - ii. Chemistry
 - c. Atmospheric/Air