Environmental Geology Spring 2018 Midterm Exam Study Guide

The Midterm Exam will be in 2 parts, the lab skills portion will be open book. You will be able to use your notes, conversion charts, portfolio products, etc. to work on lab-style problems. Labs have largely focused on identifying features on maps and photos, and thinking about geologic hazards in relation to human populations. The second part of the exam will be closed book, and consist of long-answer essay questions and short-answer terminology. Be prepared to make sketches of diagrams and recall key equations to illustrate your answers.

I would spend a minimum of studying 8-10 hours total for this exam, to assure maximum success. Use the keyword and concept list below as a check list for studying. I will share an example exam with you in class. ES473 Team Leaders with Taylor 300-400 Level Exam Experience.

Class Notes to Review:

Introduction to Env. Geology http://www.wou.edu/las/physci/taylor/g473/intro.pdf

Mass Wasting http://www.wou.edu/las/physci/taylor/g473/masswast.pdf

Lidar mapping technology http://www.wou.edu/las/physci/taylor/g473/hill_etal_2000_lidar_overview.pdf

Flood Hazards http://www.wou.edu/las/physci/taylor/g473/floods.pdf

Introduction to River Restoration

http://www.wou.edu/las/physci/taylor/g473/1 OWEB 1999 watershed fundamentals.pdf

Text Chapters (Moodle):

Introduction

http://moodle.wou.edu/pluginfile.php/405656/mod_folder/content/0/1_Keller_Intro.pdf?forcedownload=1 Earth Overview

 $\frac{http://moodle.wou.edu/pluginfile.php/405656/mod_folder/content/0/2_Keller_Earth_Overview.pdf?forcedownload=1$

Hazards Overview

http://moodle.wou.edu/pluginfile.php/405656/mod_folder/content/0/3_Keller_Hazards_Overview.pdf?forcedow_nload=1

Mass Wasting overview

http://moodle.wou.edu/pluginfile.php/405656/mod_folder/content/0/5_Keller_Landslides.pdf?forcedownload=1 Rivers/Flood Overview

http://moodle.wou.edu/pluginfile.php/405656/mod_folder/content/0/6_Keller_Rivers.pdf?forcedownload=1

Supporting Video Study Content:

national environmental policy overview https://www.youtube.com/watch?v=fwxy_9HO1MI

What are landslides? http://www.youtube.com/watch?v=JrV4uCVwmfk&feature=related

Overview of Lidar mapping technology https://www.youtube.com/watch?v=EYbhNSUnIdU

Intro to Rivers and Flooding http://www.youtube.com/watch?v=4PXj7bOD7IY

Calculating Flood Risk http://www.youtube.com/watch?v=a1gXKyIKnHk

Flood Mgt. Strategies http://www.youtube.com/watch?v=9pFTI7GjBBE

Introduction to River Restoration (we are working on now...)

Video 1: Natural Stream Restoration Part I (Good Streams) (Oklahoma State, ~9 min)

Video 2: Natural Stream Restoration Part II (Bad Streams) (Oklahoma State, ~9 min)

Video 3: Natural Stream Restoration Part III (Bad Streams Gone Good) (Oklahoma State, ~17 min)

Key Words		
Introduction	intraplate earthquake	Rock slide
Environmental Geology	landslide	Rock block slide
natural hazards	coastal erosion	Debris slide
environmental quality	volcanic activity	Scarp
water	ash zone	Toe slope
soil	lahar	Hummocky topography
waste	tsunami	Deranged contour patterns
	flood	Slow-moving landslide
management natural resources	stream bank erosion	_
water		Rapidly moving landslide Cut slope
	quake-slide	1
energy mineral	quake-tsunami flood-coastal erosion	Fill slope
	1100d-coastal elosion	Landslide hazard mapping
Geologic Hazards	Maga Wasting Haranda	Source region
fluvial	Mass Wasting Hazards Cohesion	Run-out zone
mass wasting		I IDAD Isatus desettes
coastal	Clay cohesion	LIDAR Introduction
seismic	Water cohesion	LIDAR
volcanic	Weathering	Laser
coastal	Regolith	Laser pulse
death / destruction	Colluvium	Reflection
anthropogenic	Landslide deposit	Absorption
urbanization	Bedrock	Two-wave travel time
hazard vs. risk	Controls	Laser source
contaminants	Vegetation	Pulse detector
health effects	Root strength	first-returns
environmental fate	Slope	second-returns
industrial waste	Gradient	last returns
biological waste	Angle of repose	bare-earth model
pollution	Cohesion	digital elevation model
nature vs. humans	Pore pressure	DEM
humans vs. nature	Friction	Aerial surveys
	Human activity	Laser swath mapping
Introductory Video Exercise	Earth	Land classification
Hanford Site	Debris	Vegetative structure
Radiation	Rock	Ground cover
Groundwater	Fall	Flight lines
Nuclear reactor	Topple	GPS – positioning systems
Plutonium waste	Slide	Urban modeling
Soil/water contamination	Slump	Watershed modeling
K-reactor	Rotational slide	Topographic analysis
Reactor fuel rods	Translational slide	Point cloud
Site Remediation	Flow	Laser altimetry
	Creep	First-return model
Oregon Natural Hazards	Debris flow	
•	1 1	T 4 4 TO 1 TT 1

Intro to Flood Hazards

Hydrologic cycle Infiltration

lahar

Earth flow Rock fall

Overview

seismic / earthquake subduction zone earthquake Runoff flood discharge

bankfull discharge magnitude-frequency

discharge-time

river stage hydrograph flood peak flood peak lag

peak annual discharge recurrence interval

runoff infiltration

floodplain storage drainage basin watershed drainage divide drainage network

channel floodplain

100-yr floodplain floodplain management flood hazard mitigation flood hazard assessment

floodplain zoning risk assessment hazard vs. risk urbanization floodplain storage dam - flood retention

climatic vs. geologic causes of

flooding

Intro to River Restoration (**Key Words**)

Anadromous fish

Salmonid

Coho-Chinook-Steelhead

Channel complexity

Channel habitat

Channel pattern (straight, meandering, braided)

Debris flow Drainage basin

Disturbance (fire-flood-slide)

Downcutting / incision

Estuary

Fish life cycle (spawning-

rearing-fry-redd) Hydrograph Hyporheic Zone Peak flow Floodplain

Large woody debris (LWD)

Low flow-high flow Recurrence interval Recruitment of LWD

Redd

Resident fish Riparian zone Critical habitat Degraded streams Channel narrowing

Urbanization

Ecosystem services Nutrient cycling Riparian vegetation

Fish passage Culverts Rip-rap Side channel Floodplain

In-Channel Modification Wood-boulder placement Off-channel habitat

Nutrient loading

Stream canopy/shading

Possible essay questions and other concepts

- What is the difference between geologic hazard and risk?
- List and discuss anthropogenic vs. natural environmental geology problems. How does these relate to the introductory video examples given for the Hanford Nuclear Reservation?
- List and discuss the types of environmental hazards (natural and manmade) in Oregon / PNW.
- List and discuss the types of earthquakes associated with the Pacific Northwest
- Discuss the types of hazards associated with seismic events in the PNW.
- What are the volcanic hazards in Oregon? Why do we have volcanic and seismic hazards in Oregon?
- What are the ultimate energy sources for tectonic and climactic hazards?
- List and discuss anthropogenic vs. natural environmental geology problems.
- List and discuss the types of environmental hazards (natural and manmade) in Oregon / PNW.
- List, discuss, describe, sketch the mass wasting classification.
- What is the difference between a slump and slide?
- What is the difference between a debris flow and lahar? And mudflow? Bedrock and regolith?
- Discuss flood hazards in western Oregon vs. eastern Oregon
- What is a flood hydrograph and rating curve? How are they used to assess flood hazards.
- What types of meteorological events trigger landslides, floods, and debris flow hazards in Oregon?
- List and discuss the mass wasting classification system, with sketch examples of each type.
- How are magnitude-frequency concepts applied to geologic hazards? How do these concepts relate to floods, earthquakes, and volcanic eruptions?
- What is LIDAR? How is it acquired? What is it used for?
- Discuss flood hazards in western Oregon vs. eastern Oregon; what types of conditions lead to floods?
- What is a debris flow? What types of conditions lead to debris flow?
- List and discuss the primary variables controlling slope stability and mass wasting.
- What are the significant climatic events in western Oregon that lead to flooding? What time of year?
- How is the 100-yr floodplain determined and mapped out?
- What is a rating curve? How do you calculate recurrence interval and probability of occurrence?
- What is a flood hydrograph and how does it look when comparing a forested area to an urbanized area?
- What types of meteorological events trigger landslides, floods, and debris flow hazards in Oregon?
- List and discuss the three primary methods for managing geologic hazards to prevent loss of life or property.
- List and discuss the goals and methods of "River Restoration" in the Pacific Northwest. Provide example restoration methods that we discussed in class.

Homework / Lab Exercise Skills

Map reading, photo observation, and process interpretation.

Can you conduct basic calculations of map scale, and unit conversions?

Can you draw a profile and make basic map observations?

Can you read a topographic map?

Can you identify mass wasting and flood hazard zones on a topographic map?

Can you solve basic hydrology / watershed problems?

How is a recurrence interval and probability for floods determined?

The exam will also include an open-book problem solving portion related to the lab exercises that have been assigned, the list of which is located at the following URL:

http://www.wou.edu/las/physci/taylor/g473/ES473_Assignment_Checklist_May1_2018.pdf

Lab answer keys will be posted on the class web site at:

http://www.wou.edu/las/physci/taylor/g473/ES473_home.html