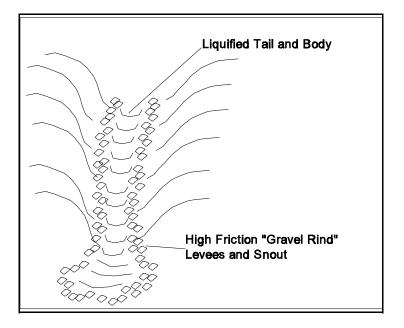
Summary Notes for Dick Iverson Talk - OSU, 04/05/01

- I. Introduction to Debris Flow / Debris Avalanches
 - A. Mass Wasting Hazards critical questions
 - 1. where, when, prediction, impact zone, how often (recurrence)
 - 2. Landslides
 - a. readily observable at spatial and temporal scale
 - b. not true of most geological processes / phenomena
 - 3. Goal of Hazards Assessment
 - a. Interpret and predict behavior of mass wasting event
 - (1) debris flow: characterize initiation and deposition
 - B. Iverson Work
 - 1. Experimental approach to debris flow processes
 - a. not to be confused with observational approach
 - b. consideration: solid and liquid components of debris flow
- II. Factors controlling Debris Flow Process
 - A. Site Hydrology and topography
 - B. Hydrologic / seismic / human triggers
 - C. slope failure threshold point
 - D. slide to flow transformation processes
 - 1. flow = very mobile with large runout "footprint"
 - 2. slides more aereally restricted
 - E. Size and shape of runout zone
 - 1. controlled by physics and dynamics of flow


** Factors A and E are directly observable at spatial and temporal time scales, factors B-D are unknowns

III. Initiation Factors

- A. intensity-duration thresholds of rainfall events
- B. soil factors
 - 1. fluid-solid interaction
 - a. debris flows = mixtures of solids and fluids
 - b. fluid content in 10-30% range max
 - 2. porosity
 - 3. permeability
 - 4. pore pressure response
- IV. Math Models / Physics
 - A. Newton's Law of Motion
 - 1. F = ma
 - a. In debris flow, F changes with time
 - b. pore pressure driven (solid-fluid interaction)

- c. need to know soil depth, hydraulic conductivity, rainfall intensity
- V. H.J. Andrews Flume Experiments on Debris Flow
 - A. Conservation of Mass and Momentum
 - B. Experimental Design
 - 1. 31 degree flume slope
 - 2. measurements
 - a. tilt meter for vertical deformation profile of flow
 - b. surface displacement and velocity of flow
 - c. pore fluid pressure
 - (1) negative pore pressure = undersaturated (partially filled pores; capillary force, < atmospheric pressure)
 - (2) positive pore pressure = fully saturated pore spaces (> atmospheric pressure)
 - d. variables
 - (1) soil and sediment mixtures
 - (2) water content
 - (3) soil density and porosity
 - (a) compaction control
 - (b) soil density controls porosity content
 - (4) rate of water infiltration (simulated "rainfall intensity")
 - 3. sediment-water mixture
 - a. ~ 10 cubic meters of sediment + 3 cubic meters of water
 - (1) sand-gravel mix + 1-15% silt-clay
 - (2) clay = cohesive material
 - b. Debris flow velocities on order of ~ 10 m/sec
 - C. Experimental Results and Observations
 - 1. to initiate failure
 - a. add water to sediment to saturate
 - (1) pore pressure is initially low (negative)
 - (2) pore pressure increases to threshold of failure
 - (3) during transport, pore pressure pulsates by increasing and decreasing
 - (a) pulsating pore pressure drives debris flow mechanics
 - 2. Model
 - a. As soil dilates (increases in volume), pore pressure decreases
 - b. Dense soil
 - (1) characterized by episodic slump
 - (2) basal shear of soil mass, soil mass dilation, pore pressure decrease
 - c. Loose Soil
 - (1) tendency for rapid failure
 - (2) As shear occurs, pore pressure increases, soil dilates and results in liquefaction and flow
 - 3. Superelevation of debris flow around curves
 - a. "run up" height that debris flow rises as it banks curve
 - (1) centrifugal force causes mass of debris flow to rise up the outside of bends

- b. "superelevation" = angle of slope of debris flow as measured from outside curve to inside curve
- VI. Conceptual Model of Flume Results

- debris flow = mixture of solids and viscous liquid
- pore fluid pressure modulates intergranular friction
- A. Numerical Modelling of Debris Flow Processes
 - 1. model uses independently measured variables to predict flow behavior a. model results / predictions
 - (1) flow depth / deposit thickness
 - (2) runout zone footprint / shape
 - (3) flow velocity