G473 Environmental Geology - Rivers and Floods

- I. Hydrologic Cycle
 - A. The Hydrologic Cycle: a circuit of water movement, with storage areas interconnected by various transfer processes... water moves not only geographically, but through physical states as well.
 - 1. Basic Model: Ocean Water----sun's energy---- evaporation -----atmospheric moisture----- condensation/precipitation------land/continental waters-----downgradient flow due to gravity------ back to ocean-----and cycling through.
 - 2. Surface to Air: Evaporation prime mechanism for transfer to atmospheric moisture.
 - a. Ocean Evaporation- heat and wind operate on oceans and result in evaporation of water from liquid to vapor form (especially effective in lower latitudes, areas with most direct heating from sun's rays)
 - b. Land Evapotranspiration- water is not only release to the atmosphere on land through evaporation, but also through transpiration of water vapor from plants/trees to the atmosphere.
 - c. Water Vapor Movement:
 - (1) Convection- vertical movement of moisture laden air masses through heat transfer process
 - (2) Advection horizontal transport of air masses by wind currents.
 - 3. Surface and Ground Waters: precipitation on land can run several possible courses:
 - a. accumulation/ponding on the continental surfaces (will subsequently be subject to high rates of evaporation).
 - b. surface runoff: in form of streams and rivers, eventually being subject to partial evaporation and final emptying back to sea.
 - c. Infiltration into the ground and uppermost strata comprising the lithosphere; forming "ground water"
 - d. Vegetative interception: the interception of precipitation by the vegetative canopy of the biosphere, may be subject to evaporation or eventually fall to ground.

B. Moisture Inventory:

1. Oceans: contain 97% of earth's water

2. Glaciers: 2% of all moisture, comprising 75% of worlds fresh water

3. Ground water: 0.5% of total

4. Surface Water: 0.2% 5. Soil Moisture: 0.1%

6. Atmospheric Moisture: 0.0001%7. Biological Water: negligible

C. WATER BUDGET

- 1. Input Mechanism into surface water process = atmospheric precipitation
 - a. Precipitation = runoff + interception + storage
 - (1) Interception = evapotranspiration + evaporation + infiltration
 - (2) Storage = groundwater and/or snow pack and ice
- 2. Precipitation: atmospheric moisture release (rain/snow fall)
 - a. Regional climatic and seasonal control on amount in any given region
 - (1) Storm/precipitation cycles
 - (a) Intensity: volume precip/unit time (> volume/time > intensity)
 - i) rainfall volume measured in inches of rain
 - ii) may graph time vs. inches of rain
 - (b) Recurrence Interval = statistical chance of a storm of a given intensity occurring within a prescribed time period
 - i) RI = <u>Total No. of Years of Record</u> No. Storms > Given Intensity
 - a) e.g. 20 RI over 100 years observation = 5 occurrences
 - b) Generally the larger the event, the greater the recurrence interval
 - (c) Duration: length of storm occurrence
 - i) Intensity inversely proportional to duration and RI
 - a) High intensity, long duration storms will produce the greatest amount of geomorphic change to the landscape

3. Interception

- a. interception of rainfall by plants, leaves, groundcover prior to reaching the ground
 - (1) Interception = "energy dissipator" in terms of rain fall impact on landscape (reduces erosion rates)
- b. Evapotranspiration: atmospheric evaporation of moisture directly from plant tissue and/or in-take of moisture into plant system
 - (1) Foliage Evaporation = function of air temp. and humidity

- c. Amount of interception = function of:
 - (1) type and species of plant cover
 - (2) density of foliage/plant cover
- d. Approximating Regional Interception
 - (1) Measure total precipitation for drainage basin
 - (2) Measure total stream discharge at mouth of basin
 - (a) difference ~= interception + infiltration
 - (b) generally difficult variable to measure
- 4. Infiltration
 - a. water/precipitation that seeps into soil/subsurface rock
 - b. Infiltration function of:
 - (1) vegetative cover
 - (2) soil permeability/porosity
 - (3) slope grade
 - (4) moisture content of soil dissolution.
 - c. Soil Moisture Content
 - (1) Soil Water Balance; soil water budget: input via precipitation and surface infiltration (capillary action to lesser extent); output via evapotranspiration. Soil water balance influenced by soil structure, vegetative characteristics, and climate
- 5. Runoff = free water flowing on continental surfaces of earth (free flowing water not tied up as infiltration or evapotranspiration)
- II. Watershed and River Analysis
 - A. Measuring Channelized Runoff
 - (1) Discharge: volume of flow/unit time (continuity equation):
 - (a) Q = VA; V = L/T; A = wd where,

Q = discharge (L^3/T) V = average velocity (L/T) A = cross-sectional area (L^2) w = channel width d = channel depth

- (b) As Q>, V> in channelized flow, i.e. stream flow is faster during flood periods
- (2) Wetted Perimeter = wetted portion of channel base and sides
 - (a) P = 2d + w
 - (b) wetted perimeter = zone of friction interface between flowing water and channel boundaries
 - i) water velocity lowest around margins of channel (due to friction), highest in central portion of channel

- (c) Hydraulic Radius of Channel: R
 - i) R = A/P (L)
- (d) Manning Equation i) $v = (R^{0.66}S^{0.5})/n$

where v = mean velocity, n = coefficient of roughness R = hydraulic radius S = slope

1. Stream Discharge and Flooding

- a. Gaging stations: measure discharge of stream/river over period of time (daily, monthly, annually)
 - (1) RI = Recurrence Interval of Discharge Data =

<u>Total No. of Years of Record</u> No. of Discharge Occurrences > Given Value

- (a) Discharge Observations (Y axis) vs. Recurrence Interval (X axis)
- b. Flood periodicities and frequencies of occurrences are important calculations for watershed planning, land use analysis, and emergency management operations
- B. Morphologic Features of Drainage Systems
 - 1. Drainage Basin: spatially restricted network of branching surface streams/rivers. aka a "watershed"- an area that contributes overland flow and groundwater to a specific stream network.
 - a. Drainage Divide: upland flow separation between runoff that descends in the direction of the drainage basin in question and that which goes toward and adjacent basin.
 - b. Drainage Net: the complex of streams within a drainage basin.
 - c. Nested drainage basins based on scale (e.g. Sewickly Creek flows past WCCC, makes its way to Yough River, which makes its way to Mon, and on to Ohio, and on t Mississippi. At each level of scale, a drainage basin can be defined).
 - 2. Topographic Considerations
 - a. Valley- lowlying area that is totally or partially occupied by a stream channel

Includes: stream channel, adjacent floodplain, and valley sides. Valley bottoms may be narrow or extensively wide Valley sides may be gentle or very steep.

- b. Interfluve- the high land above valley sides that separates adjacent valleys ("between rivers"). May be sharp and well defined or broad and diffuse upland drainage divides.
- 3. Stream Order Hierarchy: organization of drainage basin tributaries according to relative size (Horton, 1945; Strahler, 1952)
 - a. Stream Orders: hierarchical ranking of stream size within a drainage basin
 - (1) First order- smallest unit in system, represents a single tributary in a net.
 - (a) small scale tributaries in headland region of basin
 - (2) Second order- a stream formed by two first order streams coming together
 - (a) Medium scale tributary
 - (3) Third order- a stream formed by confluence of two second order streams
 - (4) Fourth Order: larger scale drainage basin
 - b. Drainage Basin Classification: based on largest order trunk stream draining basin
 - (1) e.g. 5th order Basin = drained by 5th order trunk stream, etc.
 - c. General Relationships: as Stream order >: stream length >, no. of streams of given order <, drainage area >, Discharge >, gradient <
- C. River Morphology
 - River Parts
 - a. Channel
 - b. Floodplain
 - (1) Floodplain Formation
 - (a) Lateral Erosion
 - (b) Vertical Deposition
 - c. Levee
 - 2. River Shapes
 - a. Meandering
 - b. Braided
 - c. Straight
 - 3. Controlling Factors on Discharge
 - a. Precipitation / Runoff
 - (1) Season
 - (2) Vegetative Cover
 - b. Drainage Area
 - c. Number of Tributaries
 - d. Channel Shape
 - (1) Wide / Shallow
 - (2) Narrow / Deep

III. Flooding

- A. river stage = water surface elevation
 - 1. height of surface above datum (e.g. sea level)
 - 2. flood stage
 - height of river surface during overbank conditions
 - 3. Bankfull stage height of river at which channel is completely full
- B. Gaging stations measure height of river stage
 - 1. stage rating curve:
 - a. relates river stage to discharge
 - b. Bankfull discharge
 - c. flood discharge
- C. Flood overbank flow (out-of-channel flow)
 - Flood Stage
 - Elevation of water surface associated with out-of-channel flow
 - 2. Flood Discharge
 - a. Discharge associated with overbank flow
- D. Driving Mechanisms
 - 1. Seasonal Precipitation
 - 2. Storm Events
 - 3. Rain-on-snow Events
 - 4. Dam Burst
 - a. Natural
 - (1) Volcanic Dams
 - (2) Glacial Dams
 - b. Man-made
 - (1) e.g. Buffalo Creek, WV
 - 5. Backwater Flood Effects (local damming by obstructions)
 - a. Bridges
 - b. Culverts
 - c. Ice Jams
 - d. Woody Debris Dams
- E. Special Case: Coastal Flooding
 - 1. Affected Areas: Tidal Channels, Estuaries and Coastal Rivers
 - 2. Driving Mechanisms
 - a. High Discharge from River
 - b. Ocean Storms
 - (1) Storm Surge / High Wave Activity
 - c. Tsunami (seismic sea waves)
 - d. Tidal / Gravitational Effects
 - e. Global Warming / Ice Cap Melting
 - 3. Coastal Development and Erosion Issues

- IV. Floodplain Delineation / Flood Hazards Analysis
 - A. Intensity-Duration-Frequency Analysis of Point Rainfall
 - Considerations
 - a. Economics: must design structures to accommodate reasonably largesize event within economic constraints
 - b. Geomorphic Work
 - (1) work done during extreme events
 - (a) although less than mid-size events
 - c. Recurrence interval and maximum events
 - (1) is it worth planning/\$\$ for 500 yr event?
 - d. Basic Pattern
 - (1) short duration: high intensity
 - (2) long duration: low intensity
 - 2. Data for Intensity-Duration-Frequency Analysis for Storms
 - a. Intensities calculated at varying time intervals (5 min, 1 hr, 2 hr, 6 hr 24 hr, etc)
 - b. Frequency analysis
 - (1) Recurrence Interval = "return period"
 - (a) T = 1/p = (n+1)/m
 - i) where T = recurrence interval in yrs, p = probability of equal or exceeding given intensity
 - (2) Data for highest and lowest values sparse, and must be extrapolated
 - (a) paleoflood analysis used to push limits of extrapolation
 - (3) Authors give some graphical techniques for analysis
 - B. Magnitude-Frequency Relations for Stream Discharge
 - 1. similar to rainfall intensity above, only using stream discharge
 - C. Flood Hydrograph
 - 1. x-axis = time (days)
 - 2. y-axis = dicharge
- V. Flood Hazards and Social Costs
 - A. Controlling Factors
 - 1. Land-use on Floodplain
 - 2. Magnitude
 - 3. Duration
 - 4. Season
 - 5. Forecasting / warning

B. Damage

- 1. Erosion / sedimentation
- 2. Building Destruction
- 3. Crop / Animal Loss
- 4. Death / Drowning
- 5. Property Loss / Loss of Infrastructure

C. Social Aspects

- 1. short memory by public
- 2. Federal insurance programs promote re-building / continued development
- 3. Rivers and Floodplains Heavily Populated
 - a. Water necessary for life
 - b. River valleys prime for agricultural Production

D. Human Habitation

- 1. flood plains attractive for habitation
 - a. level ground
 - b. transportation corridors
 - c. soils fertile
 - d. water source for infrastructure
- 2. problem: flood prone, damage, destruction
 - a. psychology of habitation
 - b. land developers
- 3. Flood Damage Estimates
 - a. large diffs. in flood damage estimates around US
 - (1) f(economy, hydrology, topography, population)
 - (2) quality of reports, records
 - b. illusion: "flood control"
 - c. Crop loss, livestock, scouring of topsoil (often left out of flood damage estimates)
 - d. business interuptions, commercial property loss
 - e. residential: water damage, structural damage

E. Case Histories

- 1. 1972 Buffalo Creek, Logan County, WV
 - a. Collapse and failure of coal-waste impoundment
 - (1) narrow, steep mountain valleys
 - (2) 132 million gallons of water released instantaneously
 - (3) 125 dead, 4000-5000 homeless
 - (4) catastrophic outburst flood
 - (a) discharge increased to 50000 cfs within minutes
 - (b) flash flood / wall of water
 - (c) flood depths of 3-5 m (up to 20 ft)
 - b. Heavy rainfall resulted in dam failure

- 2. Large-Scale Regional Flooding Hurricane Agnes, June 1972
 - a. Hurricane tracked from Gulf up the eastern sea board
 - b. High intensity rainfall
 - (1) PA, NY hardest hit with flooding
 - (a) 117 deaths, \$3 billion in damage
 - (b) Susquehanna River 15-20 ft above flood stage
 - (c) >200 yr flood

VI. Flood Hazard Mitigation

- A. Prevention
 - 1. Levees and flood walls
 - 2. Flood-control Reservoirs
 - 3. Storm-water Retention basins
 - 4. Channel Diversions
 - 5. Lock and Dam System
 - Channelization
 - a. Channel Deepening / Dredging
 - b. Drainage of Wetlands (> storage capacity on floodplain)
 - 7. Erosion Control
 - a. Rip-Rap
 - b. Concrete Linings
- B. Floodplain Regulation
 - 1. Restricted floodplain development
 - 2. Sustainable floodplain design
 - 3. floodplain zoning
- C. Flood Hazard Mapping
 - 1. Critical Questions
 - a. Area of inunundation vs. flood size (discharge and stage)?
 - b. Flood stage predicted?
 - c. Flood discharge / stream power predicted?
 - 2. Data Sources
 - a. Historical Flood Records / Recurrence Interval
 - b. Gage Station Data / Flow Data
 - c. Stream Numbers and Drainage Density
 - d. Remote Sensing / Aerial Photos / Geomorphic Mapping
 - (1) Soils, Vegetation, Rock Geology
 - (2) Geobotanical I.D. of Flood-Impacted Zones
 - (3) Paleoflood Hydrology
 - 3. GIS Analysis / Spatial Analysis
 - a. Floodplain Modelling
 - b. Discharge / Stage Modelling
 - (1) Channel Geometry
 - (2) Valley Geometry
 - (3) Discharge Calculation
 - (4) Stage Calculation
 - (5) Prediction of Flood-Impacted Zones

- 4. Products Available
 - a. Flood-Hazard Maps (U.S. Geological Survey)
 - b. Flood Hazard Maps (FEMA)
 - c. Floodplain Maps (RI=100 yr, U.S. Army Corps of Engineers)
 - d. Flood Insurance Maps (National Flood Insurance Program)
- D. Hydrologic Information for Flood Damage Reduction
 - 1. Data utilized for planning and mitigation
 - a. rainfall/snowmelt runoff data
 - b. weather station meteorological data
 - c. help modelling/water budgets
 - (1) basic water conveyance, engineering design data
 - d. Flood records, geomorph investigation to characterize size of known floods
 - (1) paleoflood analysis
 - (2) site evaluations following floods
 - (3) air photos/records
 - (4) historical records, papers, interviews
 - (5) gauge records
 - (6) alluvial geometries, terraces, soils types
 - (7) use of vegetation in recognizing flood-prone areas
 - (a) weird events to think about when planning
 - i) glacial outbursts
 - ii) tsunamis
- E. Floodplain Zoning
 - 1. 100 Year Floodplain
 - 2. Flood Hazard Area
 - a. Floodway District
 - (1) Zone that permits passage of 100 year flood discharge without increasing the elevation of the flood stage by more than 0.3 m
 - (a) farming, agriculture, open facilities such as parking lots
 - b. Floodway Fringe
 - (1) Zone of elevation between Floodway District and maximum elevation of 100 year flood in a region
- F. Risk Assessment of Flood Hazards
 - 1. Flood Prediction
 - a. Statistical Probabilities
 - b. Flood Frequency Analysis
 - (1) Recurrence Interval
 - 2. Flood Forecasting / Modelling
 - a. Data
 - (1) Channel Morphology
 - (a) Width / Depth / Slope
 - (b) Valley Morphology
 - (2) Catchment Area
 - (3) Infiltration / Runoff Estimates

- (a) Soils
- (b) Vegetation
- (c) Bedrock
- (d) Antecedent Moisture
- (4) Precipitation Volume
 - (a) Rainfall
 - (b) Rain-on-Snow Modelling
- (5) Flood Hydrographs
 - (a) Peak Discharge / Peak Stage Modelling

VII. Effects of Urbanization

- A. Urbanization
 - 1. < vegetative cover
 - 2. floodplain development
 - a. pavement < infiltration, > flashy runoff
 - 3. storm-water management
- B. Effects of Urbanization (> Runoff)
 - 1. < in lag time to peak discharge (flashy discharge)
 - 2. > magnitude of peak discharge from a given storm
 - 3. > total discharge from a given storm
- C. Agriculture and Forest Practices
 - 1. Clear-cutting
 - 2. Loss of agricultural areas to urbanization
- D. Planning/Engineering Solutions for Mitigation in Urban Areas
 - 1. stormwater management
 - a. detention in small volumes near source
 - (1) allowing short term retention of water on roof tops and parking lots
 - (2) underground storage tanks
 - (3) diversion of stormwater to permeable subsurface environment
 - (a) infiltration wells, porous pavement
 - (b) problem: stormwater contamination
 - (4) surface detention ponds, culverts
 - (a) nonpoint source contamination
 - (5) Flood storage in natural landscape