OVERVIEW OF FIELD TECHNIQUES: SOIL AND GROUNDWATER ASSESSMENT

- I. Drilling and Test Borings: The Primary Tool of Subsurface Investigation.
 - A. Background Information and Protocol
 - 1. Objective: what is the goal of the drilling project.
 - a. Regulatory Directives
 - b. Assessment Parameters
 - c. Results of Phase I Preliminary Investigation
 - d. Known problems, hot spots and target areas
 - e. Soil? Groundwater? or Both?
 - 2. Preliminary Drilling Information
 - a. Base map with engineering specs., boring/well locations
 - b. Site Reconnaissance
 - c. Property lines, ownership, authorization
 - d. Preliminary surveying of reference points
 - e. State and Local Drilling Permits?
 - 3. Prescribed Health and Safety Protocol
 - a. Potential Hazardous Situations to Personnel
 - b. Personal Protective Equipment
 - (1) coveralls, respirators, gloves, boots??
 - c. Drilling Safety
 - (1) Buried pipelines, waterlines, gaslines, electric
 - (2) Overhead clearance, electrical wires
 - (3) Buried tanks? Drums? Explosive Conditions?
- II. Drilling Methods: Varies According to Goals and Geologic Conditions
 - A. Hollow Stem Auger
 - 1. Penetration to 75-100 Ft depth
 - 2. Excellent for unconsolidated materials
 - Sampling and Devices and Well Materials Lowered Through Drill Stem
 - 4. Commonly used in environmental/engineering applications
 - B. Cable Tool (percussion Drilling)
 - 1. Weighted Chisel Bit on End of Cable, Lift and fall drilling method
 - 2. Percussion of bit during fall breaks rock apart
 - a. rock or unconsolidated material may be drilled
 - 3. Cuttings removed from hole by bailer method
 - 4. Drill hole must be cased to prevent collapse
 - C. Hydraulic Rotary
 - 1. Rotary action of sharpened drill bit
 - 2. Drill cuttings removed from hole by circulating fluids
 - 3. Hydrostatic pressure of drill mud keeps hole from collapsing

4. Commonly used in deeps wells of oil and gas industry

D. Air Rotary

- 1. Rotary action of sharpened drill bit
- Cuttings removed from hole by circulation of compressed air down through drill string
- 3. Fast and relatively cheap
- 4. Casing need to keep unconsolidated materials open
- 5. Drawback: in sensitive situations, traces of compressor oil may enter the system (checked by air filters)

E. Air Hammer-Percussion

- 1. Jack-hammer type drilling method
- 2. Air circulated to remove cuttings from hole
- 3. Effective in very hard crystalline rock terrains

F. Combination Percussion-Hammer/Casing Advance System

- 1. Simultaneous air-hammer drilling with steel casing advanced down borehole ("ODEX", "TUBEX")
- 2. Drill cuttings removed via air and double walled casing system
- 3. Good for difficult drilling conditions where hole stability is problem (e.g. Mine Spoil with sandstone boulders)

III. Other Types of "Holes in the Ground"

- A. Backhoe Trenching
 - 1. With a large piece of equipment may extend to 25 Ft depth
- B. Hand-dug Soil Pits
- C. Hand Augering (down to 20 Ft if you're lucky)
- D. Motorized Post-Hole Diggers ("Beaver Augers")
- E. Direct-Push Drive Points
 - 1. New technology for environmental industry
 - 2. Replaces hole drilling, hammer hardened steel drive points directly into subsurface
 - 3. Casing allows sampling of groundwater
 - 4. Good for unconsolidated/shallow applications
 - 5. Limited diameter, to several inches

IV. Geological Sampling Techniques

- A. Soil Sampling By Hollow-Stem Auger/Split Spoon Sampler
 - 1. Spoon sampler lowered through hollow-stems
 - 2. Allows unaltered sample to be taken prior to advancing drill stem (unconsolidated materials only)
 - 3. Sampler generally 2 ft in length, driven into unconsolidated materials by hammer (140 # Wt. dropped 30 inches)
 - a. "Blow Counts": no. of hammer blows required to drive sampler 6 inches in depth
 - b. Gives thumbnail idea of material density/compaction
 - c. 50 blows with no penetration = "refusal"
 - 4. Samples retrieved at prescribed depths for geologic description and/or chemical analysis, physical/engineering testing

- B. Thin-walled Sampler ("Shelby Tubes")
 - 1. Samples collected in tubes driven into unconsolidated sediments
 - 2. Shelby tubes used for soils engineering testing
 - a. vertical permeability
- C. Rotary Drill Cuttings (Air/Mud)
 - 1. Rock/sediment cuttings retrieved and logged by geologist a. depth, lithology, color, physical character
 - 2. Samples may be bagged and archived for later examination
- D. Coring
 - 1. Coring device removes cylinder of rock for geologic description
 - 2. Only good recovery technique for detailed geologic analysis
- E. Field Screening of Soil and Sediment Samples for contamination
 - 1. Rapid chemical field tests ("Hach Kits for PCB's, metals, pH)
 - 2. Organic Vapor Detectors (hydrocarbon contamination)
 - 3. Visual inspection/odors, anomalous color, chemical reactions
- F. Sample collection, archiving, shipment to lab for analysis
 - 1. Chain-of-Custody Protocol, EPA sampling technique protocol
 - 2. Documentation of sample handling and analysis (legal ramification)
- V. Precautions Against Cross-Contamination and "Induced Contamination"
 - A. Systematic Decontamination Procedures
 - 1. Constant cleaning and washing of all sampling materials
 - 2. Constant attention to sample handling (glove disposal, etc.)
 - 3. Avoid moving "contaminated" equipment from location to location
 - B. Steam-Cleaning of Drill Equipment
 - 1. "Steam-Genie": mobile pressurized steam washer (hot water shower)
 - 2. Cleaning of drill rig, drill rods, samplers, bits, materials
 - 3. Decon Pad: designated area for cleaning of materials and collection of wash waters
 - a. Disposal Protocol for Wash Waters?
 - C. Induced Contamination Pathways during Drilling Process
 - 1. Drilling Fluid Additives/Recirculated Fluids
 - 2. Water Recirculated in Drill Hole to Clean Hole
 - 3. Compressor Oil from Air-Rotary
 - 4. Drilling Muds/Grout
 - 5. Drilling Lubricants/Antifreeze
- ** constant attention to what is put in hole, and how might it cause a chemical overprint on the system... eliminate "false positives" ** Law Suits Prevail!
- VI. Monitoring Well Construction
 - A. Considerations
 - 1. Use of well (sampling only?, water depth measure? pumping/recovery?)

- 2. Depth of well (20 ft? 100's of feet?)
- B. Well Components
 - "Slotted Screen" porous slotted pipe that allows water to enter monitoring well
 - 2. "Riser Pipe" solid pipe of same diameter as screen, "rises" access hole to surface
 - 3. Pipe Couplings
 - a. No glues/adhesives used (deteiorate, potential contaminant)
 - b. Threaded pipe joins, to join lengths of riser/screen
 - 4. Outer Formation Casing- necessary to use casing to prevent hole collapse
 - 5. "Sand Pack": coarse, clean porous material used to "pack" screen to serve as filter, prevent formation collapse on scree
 - 6. "Bentonite Seal": impermeable clay sealant used to seal the annular space around riser, generally set above screen to seal off screened/water-bearing horizon.
 - 7. "Grout Seal": cement-bentonite mixture used to seal riser pipe to the surface, prevents upper level leakage into well.
 - 8. Upper Protective Casing: steel cover for well assembly to prevent damage, locking to prevent unwanted access/environmental espionage.
- **See attached diagrams of typical monitoring well installation ***
 - C. Types of Well Materials
 - 1. selected dependent upon geologic/chemical conditions, depth of well
 - 2. Types of materials
 - a. PVC, stainless steel, teflon
 - (1) Stainless and teflon are chemically non-reactive, but expensive
 - (2) PVC is useful and cheapest, but may actually dissolve in cases of organic solvents, or melt under high temperatures (exothermic reactions)
 - b. Sand Pack: clean silica sand, of variable grain-size depending on screen slot size
 - c. Bentonite Seal: Powdered or pelletized bentonite, expands upon hydration to form impermeable barrier
 - d. Cement Grout Mix: usually 5% Bentonite-95% cement slurry, bentonite used to temper cement, prevent fracture
 - D. Well Completion
 - 1. Well Development
 - a. Initially well may be "clouded" with silt/drill cuttings
 - b. Development involves pumping, bailing, removal of water from well to remove dirt and debris
 - c. Well development also cleans sand pack and surrounding formation to enhance water production
 - d. Development of well until water is clear and of constant pH/conductivity
 - 2. Special Problems
 - a. Grout Contamination

- (1) Many problems if cement grout leaks into well
- (2) Make sure a good bentonite seal is on well
- (3) Very little grout/cement in well will cause water impacts (>pH (up to 12-13), K, Ca, Na, Ba, > conductivity)
- (4) Requires a lot of work to clean aquifer/well of grout impacts, may render well useless
- 3. Other Development Techniques
 - a. Overpumping, bail-surge techniques
 - b. well surging: plunger method of causing turbulence to clean screen/sand pack
- 4. Final Well Data
 - a. Elevation control, surveying, map location, GIS entries
 - b. Well completion diagram showing installation details
 - (1) depths, problems, diameters, materials
 - c. Well Development Report

VII. Sampling of Monitoring Well

- A. Strict protocol according to EPA standards, extensive documentation of how and why well was sampled... Lawsuits Prevail!
- B. Preliminary Details
 - 1. What wells to be sampled?, location maps, keys, equipment
 - 2. What are wells being sampled for?
 - a. Chemical Parameters to be Analyzed by Lab?
 - b. Field Parameters to be Checked by Field Personnel
 - c. Acquire Labe Sample Bottles According to Protocol
 - d. How many samples to be collected, sample volumes?
 - 3. Establishment of Prescribed Sampling Plan
 - a. Sample protocol, special considerations/techniques?
 - b. Health and Safety Precautions: HASP
 - (1) personal protection equipment (gloves, coveralls, goggles, respirator, etc.)
 - (2) Access permits, authorization, dangerous conditions
 - c. Decon and cleanliness: How to keep samples and yourself from being cross-contaminated?
- C. Preparing Well for Sampling
 - 1. Opening well, removing well caps, allowing well to equilibrate with atmospheric pressures
 - 2. Measuring of Static Water Level (M-scope, water level detector)
 - 3. Sounding total depth of well (check for collapse/obstructions)
 - 4. Purging of Well
 - a. removal of stagnant well water to encourage fresh aquifer flow into well
 - b. Generally: 3-5 well volumes extracted prior to sampling
 - c. Allow well to recover sufficiently to collect sample
 - d. Disposal of purged water?

- D. Water Sampling Devices
 - 1. Bailer (PVC, teflon, stainless steel: contaminant specific)
 - 2. Pumps
 - a. submersibles, suction-lift, bladder pumps
- E. Cleanliness/Cross-contamination
 - 1. clean, clean, clean
 - 2. begin with "clean" wells, end with "dirty"
 - 3. wash everything all the time, dispose of all contaminated materials
 - 4. Dedidicated sampling equipment (bailers, pumps left in well... can get expensive)
- F. Sample Handling
 - 1. Bottle/container management; Chain of custody
 - 2. Preservatives for specific chemical parameters
 - a. refrigeration, acids, sodium hydroxide
- G. Field Parameters
 - 1. temperature, pH, dissolved oxygen, conductivity
 - 2. Field gas chromatograph?
 - 3. portable vapor analyzers?
 - 4. Hack Kits: various metals, PCB's etc.
- H. Quality Control: Samplers to Lab
 - 1. Chain of Custody Records
 - 2. Document everything done and said
 - 3. Protocol checklist procedures
 - 4. Lab Checks
 - a. Trip blanks, spiked samples
 - 5. Sampler Checks
 - a. "field blanks" to check cleanliness/decon.

VIII. Overview of Health and Safety Procedures

- A. Routine Safety
 - 1. Drilling
 - a. Trips, falls, stupid tricks
 - b. Select a safe and knowledgable drilling contractor
 - c. Preliminary site orientation
 - d. Underground Utilities
 - e. Buried Objects
 - f. Overhead Lines
 - g. Basic safety equipment: hard hat, goggles, steel toes
 - h. Drill Rigs and Falling Objects
 - 2. Basic Safe Lifting Techniques for Field "Grunts"
 - 3. Excavations: anything >5 Ft deep requires retaining device
- B. Procedures for Contaminated Sites
 - 1. Eliminate Pathways of Contamination into Body
 - a. Personal Protective Equipment
 - 2. Know what you're walking into, chemistry, LD50's, toxicity

- 3. Keep eye out for toxic effects
 - a. Local, acute
 - b. Systemic acute
 - c. Local Chronic
 - d. Systemic chronic
- 4. NIOSH Guidelines to Chemical Hazards
 - a. Substances/compound I.D.
 - b. Permissible Exposure Limit (here's a good one)
 - c. Health Hazards (MSDS sheets)
 - d. Monitoring equipment (radiation badges, gas detectors, geiger counter)
- 5. Fire/explosive conditions
- 6. Confined space hazards (Oxygen-deficient conditions)
- 7. Personal Protective Equipment
 - a. Respirators
 - b. Supplied Air: SCBA's
 - c. Protective, chemical resistant clothing/boots
- 8. USEPA Levels of Protection
 - a. Level A: Encapsulating Suit, SCBA/supplied air
 - b. Level B: Splash suit, SCBA/supplied air, gloves, boots
 - c. Level C: Splach suit, gas mask, boots, gloves
 - d. Level D: coveralls, boots
- 9. Dangerous Situations: "Just Say No" to drillers, clients and managers. If things look unsafe, they probably are.
- C. Health and Safety Training
 - 1. 40 OSHA training/certification
 - 2. 8-hr OSHA refresher/update annually
 - 3. Documentation kept with you to enter a site
- D. Personal Decontamination
 - 1. Dispose of all contaminated clothing and boots
 - 2. never eat/drink on site
 - 3. wash, scrub, clean ... decon. yourselt and equipment
 - 4. Decon. Stations: from dirty to clean away from work site
- E. Health Monitoring
 - 1. Blood Tests
 - 2. Radiation testing
 - 3. Regular Check-ups