Costa, John E. 1984. Physical geomorphology of debris flows: in Costa, J. E., and Fleisher, P. J., eds., Developments and Applications of Geomorphology, Berlin, Springer-Verlag, p. 268-317.

- I. Introduction
 - A. Debris Flows and Damage
 - 1. dollars and death yearly
 - 2. Japan, Peru, Indonesia, Africa, China Russia.... death and destruction everywhere
 - a. it's a crying shame
 - b. send more tax dollars immediately!!!
 - B. Debris Flows
 - 1. gravity-induced mass movement
 - 2. transitional between flooding and landsliding with different mechanical characteristics than each
 - 3. rapid flow of granular solids, water and air (solids 65-80% observed)
 - 4. viscosity variable according to mixture
 - 5. variations
 - a. mudflows: sand, silt and clay
 - b. lahars: volcanic mudflows
 - c. tillflows
 - d. debris avalanches
- II. Origins and Types of Debris Flows
 - A. genesis
 - 1. poorly sorted rock and soil debris mobilized on hillslopes and channels
 - a. gravity
 - b. moisture increase (rain, snowmelt, glacial outburst)
 - c. sparse vegetation
 - d. unconsolidated materials
 - 2. Most prone areas: small, steep drainage basins... why?
 - a. rain drop > proportion of water to small basins
 - b. high elevations, steep slopes (> 30 degrees)
 - c. moisture >, > pore pressure
 - 3. Threshold relations
 - a. $I=14.82 \text{ D}^{-0.39}$ where I = rainfall intensity (mm/hr), D = duration in hours
 - B. Lahars
 - 1. volcanic debris flows, may be hot or cold in origin
 - a. rainfall
 - b. rapid eruption melt of snow caps, glaciers
 - c. rapid drainage of crater lakes
 - d. pyroclastic flows that bulk up in water from mixing and melting of eroded snow
 - e. seismic-induced instability
 - f. failure of landslide-dammed lakes

- C. Tillflows
 - 1. glacial debris flows at ice front during melting
 - a. slumping of seds. over ice
 - b. backwasting of sed. laden slopes of stagnant ice
 - c. ablation of debris-laden ice
- III. Failure Mechanisms
 - A. conditions
 - 1. steep slopes > 15-20 degrees
 - 2. large influx of water
 - a. saturation of pore space
 - b. pore pressure increases
 - (1) rate of deep percolation < rate of surface infiltration
 - (2) decreases shear strenght, failure
 - (3) spontaneous liquefaction and flow
 - c. shear strength decreases
 - 3. originate in head-of-hollows commonly
 - a. initial failure: slide, slump or topple
 - b. transformation downslope to debris flow
 - via dilatency- increase in bulk volume of soil mass, > pore volume,
 > failure
 - (2) incorporation of additional water
 - (3) liquefaction
 - c. change in resisting force from sliding friction to internal viscosity of flow
 (1) allows rapid velocity > down slope
- IV. Characteristics of Flowing Debris
 - A. General
 - 1. relatively few direct observations, but some exist and are summarized in a table
 - B. Character
 - 1. commonly use preexisting drainage ways, although can use open slopes
 - a. levees form to contain flow
 - b. "surging wet concrete moving down valley"
 - (1) surges: temporary damming and breaching of channels by debris
 - (2) surges commonly carry largest boulders
 - (3) surges followed by more fluid, watery slurries
 - 2. Vel. observed 0.5-20 m/sec
 - 3. Texture of flow
 - a. 10-20% silt and clay
 - 4. Non-newtonian rheology: viscosity up to 8000 poises
 - 5. water content: 10-30%
 - 6. capacity to carry large boulders many miles

- 7. High erosive capacity on channel sides
 - a. up to 6 times the shear stress on channel beds compared to flood flow
 - (1) bedrock scour observed: 4 m in less than 24 hours
- 8. Mobility of debris flows over gentle slopes
 - a. function of clay content
 - (1) 1-2% clay, < permeability, > pore pressure in fluid, > mobility
- 9. other
 - a. ground shaking, loud rumbles/sound

V. Physics of Debris Flows

- A. Impact Force
 - 1. very high impact force
 - a. tree uprooting
 - b. houses removed etc.
- B. Shear Strength
 - 1. > sediment concentration, > viscosity, > shear strength to flow
 - a. shear strength K internal strength of mass that must be overcome by critical shear stress before motion takes place
 - (1) source: fine matrix, cohesive
 - (2) coarse clasts = friction internally (interlocking)
- C. Viscosity
 - 1. Debris flows: are they Newtonian or Bingham fluids??
- D. Coulomb-viscous Model
 - 1. plastico-viscous bingham fluid models
- E. Dilatant Model
- F. Boulder Transport and Suspension of Solids
 - 1. General
 - a. boulders commonly transported
 - b. "float" or weakly tumble in flow
 - c. commonly deposit as diamicts
 - d. what keeps these big boys floating at top of flow???
 - 2. mechanisms of boulder support and transport
 - a. Cohesion: clay -water slurries as support medium
 - (1) > density, increased internal strength to support
 - b. Buoyancy: density differences
 - c. Dispersive Pressure
 - (1) Bagnold concept from 50's
 - (a) during shear flow, largest clasts drift towards free surface

- (b) commonly find boulders at top and front of flow
- d. Turbulence
- e. Structural Support: grain to grain contact and support
- VI. Deposition of Debris Flows
 - A. conditions of deposition
 - 1. low gradient areas of decreased confinement
 - a. e.g. fans at trib. mouth, spreading, thinning, deposition
 - b. < fluids, > internal friction... deposition
 - 2. debris flow generation: complex between precip. and sed. supply
 - B. Alluvial fans and debris flows; d.f. common on fans in west
 - 1. pretty good fan discussion on facies and deposition
- VII. Differentiation of Water Floods and Debris Flows
 - A. Introduction
 - 1. continuum: water floods to debris flows
 - 2. floods
 - a. mud floods vs. clear water floods
 - (1) clear water floods: solids separate from liquids during deposition
 - (2) debris flow: en masse deposition with little phase separation
 - 3. Waterfloods
 - a. turbulent water flows with small amount of seds.
 - b. deposits: stratified, sorted to poorly sorted
 - 4. Mudfloods = hyperconcentrated flows
 - a. stream flows enriched in sediment (40-70% seds)
 - (1) e.g. Rio Puerco, NM

summary comparison

Flow	sed. load	bulk density	fluid type	deposits
water flood	1-40%	1-1.3 g/cu. cm	Newtonian	stratified
hyperconc. flow	40-70%	1.3-1.8 g/cu. cm		poorly sorted weak strat.
debris flow	70-90%	1.8-2.6 g/cu. cm	Visco-plastic	diamict, levee-lobe

** all three flow types may exist at any given time during a given event

- B. Field Evidence
 - 1. field data, land forms, sedimentology
 - a. presence or absence of bouldery levees and fans
 - b. sed. of deposits
 - c. extent of veg. damaage
 - d. extent of ground litter disruption below high water marks
 - e. gaging station records
 - 2. Levees and terminal lobes
 - a. common in debris flows
 - 3. boulder berms
 - a. open framework gravels and boulders adjacent to drainage ways
 - (1) large boulders at top of berms
 - (2) no matrix
 - (3) localized of short occurrence along channels
 - b. origin? a mystery:
 - (1) slip faces of boulder dunes/deltas?
 - (2) macroturbulence features?
 - (3) kolk vortex action?
- C. Sedimentologic Evidence
 - 1. diamict common in debris flows
 - a. matrix supported boulders
 - (1) matrix washing may result in clast supported
 - b. woody debris, organics
 - (1) commonly floats
 - c. bedding and sorting poor
 - 2. water-laid seds.
 - a. sharp bedding contacts
 - b. stratification
 - c. cut and fill
 - d. imbrication of clasts
 - e. percussion marks from turbulence on clasts
 - f. open-framework gravels
 - 3. examples of textural analysis for use in i.d. process
 - a. trask sorting factor
 - b. grain plots, etc.
- D. Vegetation Damage

- 1. water floods turbulent
 - a. scar and destroy veg. in path of flood
- 2. debris flows
 - a. complete removal of all veg. and trees
 - b. sheared trees suggesting lift off of channel bottom
- E. Gaging Station Records
 - 1. examples of gage records, case studies
- F. Estimating the Discharge of Sediment Bearing Flows
 - 1. paleohydraulic methods will be screwed up if applying water flood techniques to debris flow
 - a. will greatly over estimate flood discharge
 - b. diff. rheology than water, e.g. Mannings eq. would not work
- G. Empirical Formulas
 - 1. gives e.g. of formulas that have been modified for use with debris flows to determine vel., Q, etc.
- H. Bulking Factors
- I. Superelevation of Flows around channel bends and Runup
 - 1. Tendency for fluid flows to reach higher elevations around outside of channel bends than on inside
 - a. superelevation common in debris flows
 - b. centrifugal force and radial accleration around bend
 - (1) may be used to determine flow velocity, e.g. given using Newtonian physics
- J. Photographic Techniques
 - 1. on site radar guns, videos etc. used to reconstruct flows and velocities
- VIII. Mitigation of Debri-Flow Hazards
 - A. Avoidance of Hazardous Areas
 - B. Control of Grading, clearing and drainage
 - C. protective structures
 - D. warning and evacuation
- IX. Further Research

- Cause, moisture conditions, ppt Α.
- Β. field identification
- C. mechanisms
- D. characteristics
- flow parameters and paleohydraulics of debris flows? Occurrence and risk analysis, recurrence estimates. Ε.
- F.