Introduction to Landscape Analysis

I. Introduction

- A. Geomorphology: The study of surface landforms, processes and the historical evolution.
 - 1. Interdisciplinary Study: cross-over with scientific disciplines of sedimentology, soil science, geography, climatology, hydrology, glaciology, civil engineering and volcanology.
- B. Physiography
 - 1. Physical composition of the landscape (on continental areas)
 - a. climate
 - (1) long-term average meteorological condition
 - (a) precipitation
 - (b) air temperature
 - b. vegetation
 - (1) Trees
 - (a) Conifers
 - (b) Deciduous
 - (2) Grasses
 - (3) Shrubs
 - (4) "undergrowth"
 - c. soils
 - (1) physical characteristics
 - (a) mineral material
 - (b) organic material
 - (2) chemical characteristics
 - d. bedrock geology
 - (1) rock types
 - (a) igneous
 - (b) sedimentary
 - (c) metamorphic
 - (2) rock age
 - (3) rock structure
 - (a) faults
 - (b) folds
 - e. topography
 - (1) slope angle
 - (2) slope aspect
 - (3) relief
 - f. surface hydrology
 - (1) streams / rivers
 - (a) watersheds = stream networks
 - (2) groundwater / springs
 - g. land use / anthropogenic activity
 - (1) e.g. urban vs. rural

- 2. Physiographic Provinces
 - a. Geographic grouping of land areas by similar characteristics
 - (1) "classification" grouping / categorization by features

C. Surficial Processes

- 1. All near-surface Earth processes that affect the landscape
 - a. Rock Weathering and Erosion
 - b. Fluvial Systems (rivers)
 - c. Glacial Systems
 - d. Mass Wasting
 - (1) Gravity-driven processes (e.g. landslides)
 - e. Eolian (wind) Processes
 - f. Anthropogenic Activities
 - (1) e.g. strip mining
 - g. Groundwater Activity
 - (1) hydrothermal / volcanic
 - (2) karst / solution
 - (a) limestone
 - (b) evaporites
 - h. Active Tectonics (Neotectonics)
 - (1) mountain building
 - (a) Crustal thickening
 - i) folding
 - ii) faulting
 - iii) volcanism
 - (2) active surface uplift
 - (3) active surface subsidence
 - (a) tectonic
 - (b) compaction
 - (c) fluid withdrawl / anthropogenic
 - i. Ocean Systems
 - (1) Coastal land-ocean interface
- 2. Agents of Surface Erosion and Transportation
 - a. Wind (eolian)
 - b. Water (fluvial / groundwater)
 - c. Ice (glacial)
 - d. Gravity (mass wasting)
- II. Ultimate Driving Forces at the Earth's Surface
 - A. Driving Force vs. Resistive Framework
 - 1. Driving Forces
 - a. Force = (mass)(acceleration); expressed as a vector with magnitude and direction
 - b. Energy: capacity to do work
 - (1) Kinetic Energy: energy of motion
 - (2) Potential Energy: energy of position

- c. Work = Fs; where F = Foce and s = distance
- d. Driving Force: Application of energy in the context of performing work on earth materials (e.g. hydraulic force + particles = erosion)
- e. Driving Forces in Geomorphic Systems: Climate, Gravity, Internal Heat/Tectonics
 - (1) **Climate** (Exogenic Force: from without)- average weather conditions at any place over a long period of time.
 - (a) Climate and the sun
 - i) Driven by solar energy of sun, i.e heat
 - ii) solar insolation variable around planet depending upon geometry and latitudinal position (highest at equatorial belt, lowest at poles)
 - iii) Solar energy transfered as heat in atmospheric/oceanic systems of the earth----climate systems driven by the heat transfer of these systems (i.e. atmospheric and oceanic circulation patterns)
 - (b) Climate largely driven by heat transfer of suns energy about atmosphere and ocean waters
 - (c) Climate as a 1st order controlling factor, influences:
 - i) rainfall/solar insolation of area
 - ii) vegetative growth
 - iii) style of weathering/erosion process
 - iv) hydrologic processes (fluvial, glacial)

(2) Gravity as a controlling factor

- (a) Force of attraction between the earth's center of mass and surface materials (sediment, soil, water) drives landscape evolution
- (b) $F = G [(m_1m_2)/r^2]$; where F = force of gravity, G = gravitational constant, m = mass of 2 objects in space, r = distance separating the two objects in space. Given all other variables constant, F > with < r, and F < with >r. Each body exerts an equal force of attraction
 - i) g = acceleration of a falling object (e.g. sediment) due to gravitational force F, assumed to be constant at 9.82 m/sec²

- (c) Weight = "pulling force" = (mass)(g), units in Newtons
 - i) shear force vs. normal force
- (d) Gravity obviously influnces surface water flow, mass wasting/hillslope movement processes, serving as a driving force
 - i) Driving force for flowing water and ice

(3) Internal Heat of the Earth (i.e. Tectonics)

- (a) Internal Heat of Earth: supplied primarily by:
 - i) radioactive decay with exothermic heat loss
 - ii) frictional heat by earth tides and internal rock deformation
- (b) Based on seismic analysis: earth's outer core is thought to be of high enough temperature to be molten
- (c) Internal Heat Transfer
 - i) Mantle convection: physical movement of rock material as a heat transporting medium
 - a) hot, deeper mantle rises as it is of < density
 - cooler, shallower mantle sinks as it is of > density
- (d) Internal heat transfer of the earth thought to be the driving mechanism of plate tectonics and plate motion
 - i) oceanic spreading centers/volcanism
 - ii) plate subduction and volcanic arcs
 - iii) plate collision and rock uplift/deformation/mountain building
 - a) crustal folding, faulting, and fracturing
 - iv) Rates of seafloor spreading can influence sea level
 - a) fast-spreading: greater displacement of ocean water, higher sea levels.

2. Resisting Framework (that which the force in acting upon to create landscape)

- a. Geology of Land Area
 - (1) Lithology: rock types
 - various rock types have variable resistance to erosion depending on mineralogy and chemistry and the climatic/weathering regime

- (b) Igneous, Metamorphic, Sedimentary
- (2) Rock Structure
 - (a) Folded rocks
 - (b) Faults, Fractures, Joints
 - (c) Mountain Belts/Uplifted Rock Areas
- (3) Rock Structure generally forms zones of weakness upon which other surface processes can act to carve the landscape
- III. Hierarchy and Scale of Geomorphic/Landscape Units
 - A. Global Planetary Body: "Geoid"-reference surface of earth as if it were covered entirely by water; Earth oblate Spheroid
 - 1. Morphotectonic Regions: regions or landscapes characterized by similar tectonic and stuctural character
 - 2. Continents and Ocean Basins
 - a. Physiographic Provinces- division of continental land masses into units of land area of similar physical geomorphic character
 - (1) Landforms- element of the landscape that has consitence of form or regular change of form throughout. Generally similar landforms result from similar processes and condtions
 - (a) Scenery- assemblage of landforms that can be viewed from a single vantage point
- E.g. Central Lowlands Province includes a Till Plain Section made up of glacial moraine landforms.
- IV. Time/Evolution/Rates of Change
 - A. Landscape Evolution: concept of progressive change of landforms in response to surface processes operating over a period of time.
 - 1. Landforms/landscapes will display characteristic features at successive stages of development.
 - a. Provides and avenue for relative dating of landforms on the basis of developmental stage
 - (1) If rates of process/change are known, ages of landforms and landscapes can be determined through deductive reasoning

- B. Time is an essential ingredient in any geologic process
 - 1. In terms of geomorphic process, variable levels of time are required for desired products of change
 - a. e.g. time scale variation between slow steady-state soil creep vs. instantaneous slope failure
- C. Cyclicity and Time
 - 1. Geologic processes are by nature cyclic and repetitive over time.
 - 2. Geologic cyclicity readily evident in geomorphic systems
 - a. e.g. Flood cyclicity of river basins
- V. Constructional vs. Destructional Processes
 - A. **Constructional Landforms**: those land units that have been or are being built (i.e. increasing in mass, height, or area)
 - 1. Constructional Landforms created by mass redistribution
 - 2. Examples
 - a. Tectonic
 - (1) Volcanic Accumulation/Mountain Building (Orogeny)
 - (2) Fold/Fault Block Mountains (Orogeny)
 - (3) Epeirogenic Uplift of land areas
 - (4) Isostatic Uplift of Land areas
 - B. **Destructive and/or Erosionally-Derived Landforms**: those landforms that are derived by weathering and erosion (destruction)
 - 1. Includes erosion of rock material and deposition of sediment
 - 2. Examples
 - a. Glacial rock scouring and depositional landforms
 - b. Fluvial erosion and depostional landforms
 - c. Eolian Landforms
 - d. Coastal Landforms
- VI. MORE ON GEOMORPHOLOGY, CLIMATE AND TECTONICS
 - A. Mass Balance: Exogenic vs. Endogenic Processes
 - 1. Exogenic Processes: destructive geomorphic processes that originate at or above the earth's surface

- a. Weathering-erosion-denudation processes
 - (1) e.g. Chemical/Physical Rock Weathering
 - (2) e.g. Rilling/Gullying/Fluvial Erosion
 - (3) e.g. Glacial scouring/erosion
- b. Theoretically: if exogenic processes were to operate on a landscape, unimpeded by opposing forces, there would be a tendancy to reduce the landscape to a relatively flat, featureless surface with few topographic irregularities ("Peneplanation" concept)
 - (1) "Base Level" = theoretical surface of erosional equlibrium at which, the land surface will no longer be eroded.
 - (a) Ultimate baselevel: Sea level, theoretical end point of continental erosion.
- c. Climate is an exogenic process that flucutates and upsets geomorphic equilibrium in the landscape.
- 2. Endogenic Processes: internal processes within the earth that result in uplift and rejuvenation of the landscape
 - a. e.g. Tectonic Mountain Building Processes
 - (1) Rock Folding, Faulting, Uplift
 - (2) Epeirogeny
 - b. Volcanism
 - c. Endogenic Processes result in an influx of lithospheric mass and energy, rejuvenating the landscape and tipping geomorphic equilibrium out of balance

B. Endogenic Effects

- 1. Diastrophism or Tectonism: Collective processes that deform the earth's crust
 - a. Epeirogeny: regional uplift or depression of the earth's crust over large areas with little internal deformation of original rock structure (broad, regional, gentle uplift)
 - b. Orogeny: relatively intense deformation of the crust to form structural mountains (folded, faulted, uplifted terrane).
 - c. Isostacy: principle based on density contrasts within the crust of the earth. Less dense rock material (e.g. granitic continental rocks) will tend to ride at a higher elevation compared to more dense rock material (e.g. basaltic oceanic rocks).
 - (1) The driving force of isostacy is gravity, which is responsive to a heterogenous distribution of rock density.

- (2) Isostatic Equilibrium: Masses of crustal rock of a given density will adjust themselves relative to the earth's gravitational field, density and loading.
 - (a) As loads are removed from the crust (e.g. melt of ice sheets or denudation via erosion), the upper mantle should adjust in combination with the over-riding crust, resulting in net "bouyant" uplift of the crustal surface
 - (b) As loads are added to the crust (e.g. glacial ice advance, or sediment accumulation in a basin), the upper mantle should adjust in combination with the over-riding crust, resulting in net depression or subsidence of the crustal surface.
 - (c) Much of the isostatic compensation is likely taken up by the asthenosphere or "plastic" upper mantle between 60 and 200 km depth beneath the earth's surface.
 - (d) Rates of isostatic rebound decay exponentially as the crust gets closer to equilibrium/stasis. Conversely, rates of isostatic rebound are high initially as crustal disruption occurs
- (3) Isostacy intimately related to epeirogenic movements of the earth's crust on a regional scale
- 2. Uplift of earth's crust: creates potential energy that available for conversion to kinetic energy via exogenic geomorphic systems
 - a. In Comparison: Rates of crustal uplift are much higher than those of crustal denudation (a much slower process)
 - b. E.g. calculations of vertical displacement rates based on dated events: Range -1200 cm/1000 yr (subsidence) to +2400 cm/1000 yr (uplift).
 - (1) Problem with determing rates from stratigraphic record: end up with minimum rate nos., it is not known if vertical displacement was instaneous, continuous over long periods, or some combination thereof.
- C. Mass Balance: Endogenic vs. Exogenic Processes
 - 1. Thus exists a balance between crustal uplift (endogenic) and crustal denudation (exogenic) in the form of "dynamic equilibrium"
 - 2. If rates of uplift far exceed rates of denudation, equilibrium threshold will be crossed and the geomorphic/landscape system will be thrown into disequilibrium

- 3. e.g. climatic conditions could be such to trigger extensive erosion and denudation of the landscape, resulting in "de-loading" of the crust, thus promoting regional epeirogenic uplift.
- 4. Equilibrium System: based on principles of mass balance and mass distribtution
 - a. uplift: addition of mass to crustal region
 - b. denudation: redistribution of mass out of region
- D. Climate, Process, and Landforms
 - 1. Climate Classifications: based on regional classification by observed temperature and precipitation values (ranges, averages, etc.)
 - a. e.g. Koppen Climate Classification
 - 2. Climatic Geomorphology: examining the relationship between landforms, processes of landform evolution, and climate
 - a. Geomorphic mechanics vary in type and rate according to the particular climatic zone in which they function
 - b. Basic Notion: Climatic regime imparts exogenic energy into the geomorphic system, energy that is available to do geomorphic work (erosion, transportation, deposition).
 - 3. Climate-Process Systems
 - a. Attempt to empirically relate occurrences of Holocene landforms with Modern climatic regimes
 - (1) Problems:
 - (a) relict landforms derived form earlier, different Quaternary climate regime
 - i) e.g. morainal deposits in Illinois are a relict of a past glacial climate, however the morainal landforms have not yet re-adjusted to the present climatic regime
 - (b) climate-landform response processes are poorly understood, little direct observation exists, little laboratory experimentation exists.
 - b. Based on Quaternary Studies: we know that dramatic climatic fluctuations have occurred in the recent past (and are still occurring?)
 - (1) e.g. glacial ages as evidence by deposits
 - 4. Possible Controls of climate and climate fluctuation
 - a. Atmospheric Composition
 - (1) e.g. Carbon dioxide content and greenhouse effect

- (2) volcanic ejecta and particulate matter
 - (a) solar blocking
- b. Astronomical motions affecting the pattern and intensity of solar insolation of the earth
 - (1) tilt of earth's axis
 - (2) variations in orbital path around sun
 - (3) rotational wobble of earth's axis
 - (a) calculated astronomical periodicity: 20,000 to 100,000 years
- c. Tectonic configuration of landmasses
 - (1) e.g. oceanic circulation and climatic patterns were likely much different 200 m.y. ago durin the time of Pangaea
 - (2) The orientation and latitudinal position of land masses will have an influence of regional climates and oceanic circulation patterns

E. Climate and Sea Level Fluctuation

- Based on ocean floor sediment cores, oxygen isotope data and paleoecology (fossil) studies suggest that sea level has fluctuated drastically compared to that of present
- 2. Relative sea level change due to (relative to continents)
 - a. continental uplift or depression (apparent sea level change)
 - b. Eustatic rise/fall of sea level: in which absolute water level is rising or falling.
- 3. Basic Model:
 - a. glacial age/ice advance: sea level decline due to storing of evaporative waters as glacial ice
 - b. Interglacial/ice retreat: sea level rise due to melting of ice and return of waters to oceans
- 4. Thus climate must be conducive to particular state of glacial flux; in turn influencing relative sea level
- 5. Example of Climate, Sea Level and Geomorphic Response:
 - a. Fluvial Systems generally very responsive to base level/sea level change
 - (a) during glacial advance; sea level lowstand; Fluvial systems will tend to erode and entrench valleys to attain condition of decreased potential energy during glacial retreat; sea level highstand; Fluvial systems will tend to infill valley in response to rising base level.

(1) Alternating Filling followed by cutting: result in depositional river terraces left high above modern river stage/floodplain.

a. Other Climatic Effects

- i. Climate can also effect:
 - (1) Hydrologic conditions: regional runoff patterns
 - (2) vegetation patterns
 - (a) hence, in turn hillslope stability
 - (b) or sediment load in streams/rivers
 - (c) Fire Occurrence