Role of Beaver in Stream Ecosystems: Overview of beaver life history and habitat requirements

Chris Jordan, Michael Pollock - NOAA Northwest Fisheries Science Center Joe Wheaton, Nick Bouwes — Utah State University John Stella - SUNY College of Environmental Science and Forestry, Syracuse

Overview

- Life history niche
- Beaver diet and food preference
- The colony, the lodge, and the cache
- Dams
- Geomorphological feedbacks
- Ecological feedbacks

Life History Niche

- Largest rodent in North America (up to 90 lbs!)
- Ubiquitous within N. hemisphere temperate ecosystems
- Range from boreal to aridlands
- Habitat generalist; highly adaptable
- Common habitat ingredients: water + wood
 - Northern tundra and treeline range boundary: wood limitation
 - Southern range desert boundary: perennial streamflow and/or wood limitation

Worldwide distribution of beaver

- Castor canadensis (N. America)
- Historically, 60–400 million pre--European settlement (Seton 1929)
- Currently, 6--12 million (Naiman et al. 1988), but estimates are crude
- Spatial distribution approaches its historical range
- C. fiber (Eurasian beaver)
- More limited current distribution, but expanding back to parts of its historical range

Pollock MM, Heim M and Werner D. 2003. *Hydrologic and geomorphic effects of beaver dams and their influence on fishes.*

300 year history of beaver extirpation in US - economic, not necessarily biological extirpation

A HABITAT GENERALIST - AND HIGHLY ADAPTABLE

- Lakes
- Rivers and streams
- Abandoned channels
 on floodplains
- Wetlands

FROM BOREAL FORESTS....

http://www.forgov.bc.ca/dfn

...TO DESERTS

http://www.rv-boondocking-the-goodlife.com/

Beaver Dam Creek, Long Island, NY

EVEN SOME UNLIKELY PLACES...

- Estuaries
- Glacier outwash streams

Beaver Diet: A choosy generalist

- Spring/Summer: herbaceous plants, including aquatic and riparian forbs, grasses, grains and row crops
- Fall/Winter: tubers, bark and cambium of cached woody plants
- Woody plants comprise 86% of winter diet; 16% of summer diet (Roberts and Arner 1984)
- Number of woody species consumed range from 3 at northern range limit to >30 in southern region (Aleksiuk 1970, Hill 1982, Novak 1987)

- Colony unit = 6–8 related individuals
- Avg. litters = 2–5 kits
- Young stay with parents at least 2 years
- Adults (>2 yrs) disperse to establish new lodge, 1 – 25k away from natal site
- 73% females dispersed in spring, 60% males dispersed in fall (Windels 2014)
- Territories marked with scent mounds
- Home ranges tend to follow shorelines in lakes, ~1km in streams
- Colony saturation densities vary with landscape and region
- Max. density ranges 0.5–5 colonies/km²
 (Hill 1976, Novak 1987, Baker and Hill 2003)

The Colony

John Stella

Dispersal Distances

Data complied by Steve Windels, NPS

Aquatic Habitat is Critical to their Success

- Beaver more agile in water than on land; maximize time in the water
- Ponds provide cover from predators and foraging pathways
- Lodge includes underwater entrance, nest area above water

Location, location,

- Bar Oceation quatic lodges
 - Caches are submerged or exposed

Yes, that's all well and good, but what we're really here to learn about is... BEAVER DAMS

- Created to impound water around lodge
- Dam location / repair cued by running water
- Dams constructed of wood and available debris (e.g., plastic, metal)
- Where palatable species are rare, conifers are used more in dams, with hardwoods saved for the food cache (Barnes and Mallik 1996)

World's largest beaver dam

Found in Alberta, Canada (2007) using Google Earth
850 m; longer than Hoover Dam

Dam/Pond

- Multiple dams create safe transportation corridors to connect large ponds
- Dams complexes grow over time, allowing beaver access to more food sources

BEAVER ARE LIKE ROTATIONAL CROP FARMERS

- They will selectively work an area hard for 2-3 years
- Then let it lie fallow and move upstream or downstream

Joe Wheaton

DAMS ARE POROUS... & TRANSIENT

DAMS CHANGE NATURE'S CLOCK

Residence time of:

- Water
- Sediment
- Nutrients

What would time distributions look like when -

- Stream Undammed
- Dam present, Dam breached / failed?

DAMS CREATE A DIVERSITY OF HYDRAULIC HABITATS...

Carol Volk

Dams spread water out...

Dams back water up (and down)...

Date

Dam building activity drives the ecological feedbacks that beaver are known for

- Shallower water table
- Increased groundwater moisture
- Forest species composition and size distribution
- Multi-stemmed growth
- Woody species regeneration

Beaver impacts: increase wetland area

- Beaver change landscape from terrestrial to aquatic
- Most landscape change occurs in first 20 years
- Increased landscape diversity (Wright et al. 2002)
- Waterfowl habitat
- Increased amphibian habitat (Karraker and Gibbs 2009)

Beaver impacts: forest structure

- Removal of understory and canopy trees
- Open up canopy to understory/unpalatable species

Multi - stemmed growth habit

Woody Species Regeneration

Harrison & Stella 2010; Not for distribu5on (Contact J. Stella, stella@esf.edu)

Ecological Consequences of Beaver Activity

Another Ecological Consequence of Beaver Activity

Alza, C.M. 2014

But what about the down-sides?

Upstream passage of beaver dams (natural and analogs) by adult steelhead trout

Upstream passage of beaver dams (natural and analogs) by juvenile steelhead trout

Month

Temperature difference between treatment and control reaches

But What Happens When Beaver Dams "Fail"?

Figure 10: Progression of reach at upper Owens through a period without a dam (A; 2005), with an active, partially breached dam (B; Nov 2009), to an abandon, partially breached dam (C; April 2010).

Beaver Activity or Restoration* Intervention @ Upper Owens Site		ı* Site	Beaver Dam Constructed		Beaver Dam D Reinforced* E	don ?	
	2005	2006	2007 ¥	2008	¥ 2009	2010	2011
Monitoring Activities @ Upper (Owens	 Airborne LiDaR & Imagery			Topo Sur	vey Topo Survey Imagery	Continued Joe Whe
	Conti	nuous Fish Migra	ation Monitoring	/ Regular Spa	awning Surveys	/ Annual Habita	t & Beaver Surveys

The Dynamics of Beaver Dam Complexes Form Landscapes

