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ABSTRACT

Floodplains in the Pacific Coastal Ecoregion (PCE)

stem from steep eroding mountain landscapes in a

rain forest environment, and sustain a rich array of

natural resources. Like floodplains elsewhere,

many of the approximately 200 coastal river valleys

are profoundly altered by flow regulation and land

conversion for agriculture and urban development,

and these activities have contributed to widespread

declines in anadromous fishes and environmental

quality. Some of the coastal river valleys, however,

still retain many of their natural features, thereby

providing important reference sites. Understanding

fundamental biophysical processes underpinning

natural floodplain characteristics is essential for

successfully protecting and restoring ecological

integrity, including inherent goods and services.

This article examines factors underpinning the

ecological characteristics of PCE floodplains, par-

ticularly riparian soils and trees. Drawing on over

two decades of research and literature, we describe

the spatial and temporal characteristics of physical

features for alluvial PCE floodplains, examine the

importance of sediment deposition and associated

biogeochemical processes in floodplain soil forma-

tion, quantify vegetative succession and production

dynamics of riparian trees, discuss how epiphytes,

marine-derived nutrients, and soil processes con-

tribute to tree production, describe the roles and

importance of large dead wood in the system, the

role of termites in its rapid decomposition, and

show how large wood contributes to vegetative

succession. These highly interconnected features

and associated processes are summarized in a

model of system-scale drivers and changes occur-

ring over several centuries. Collectively, this inte-

grated perspective has strong implications for

floodplain rehabilitation, and we identify appro-

priate metrics for evaluating floodplain condition

and functions. We draw heavily from our own

experience on several well-studied rivers, recog-

nizing additional studies are needed to evaluate the

generality of concepts presented herein. As in any

complex adaptive system, fundamental uncertain-

ties remain and constraints imposed by the legacies

of past human actions persist. Nevertheless, the

evolving knowledge base is improving conservation

strategies of lightly modified floodplains and is

supporting the incorporation of emerging process-

based perspectives into the rehabilitation of heavily

modified systems.
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INTRODUCTION

Floodplains are highly complex, diverse, and pro-

ductive systems of great ecological, social, and

economic values. In our perspective, floodplains

consist of valley floors and associated landforms

created by fluvial sediment redistribution within

the recent climate. These areas are well known for

their important roles in sustaining regional biodi-

versity and water quality, and for their capacity to

produce trees and fish (Tockner and others 2008).

In many respects, floodplains are analogous to coral

reefs and tropical forests in harboring regional

diversity and sequestering carbon and nutrients

(Naiman and others 2005b). In contrast to uplands

they are subject to seasonal, and often extreme,

variations in water flow and sediment flux. Con-

comitantly, they exhibit strong spatial gradients in

moisture and in sediment texture, both of which

are major controllers of ecological integrity (Nai-

man and others 2008). The concentration of bio-

diversity, the levels of carbon and nutrient

sequestration, the spatial and temporal variability

in moisture and sediment characteristics, and the

social values they support make floodplains dis-

proportionately important relative to other por-

tions of river catchments. Nevertheless, floodplains

are being transformed worldwide through land

conversion, flow regulation, and flood abatement

actions (Tockner and others 2008), often with low

priority given to protecting underlying mechanisms

sustaining their diversity and productivity.

It is a daunting challenge to describe the funda-

mental dynamics of active floodplains, to predict

the outcome of human modifications to water,

sediment, and nutrient flows, and to recommend

self-sustaining restoration and conservation strate-

gies. Increasingly, however, managers are expected

to predict, achieve, and demonstrate significant,

beneficial responses to restoration actions. Evalu-

ating floodplains from a process-based perspective

helps set realistic expectations and establish

appropriate performance measures. Moreover,

understanding whether floodplains exhibit equi-

librium or non-equilibrium dynamics at the scale of

interest (sensu Suding and Gross 2006) is crucial to

both the design of appropriate restoration strategies

and the ability to accurately predict restoration

outcomes. Where floodplains are found to trend

predictably toward a relatively stable pattern,

management strategies can focus on restoring

underlying processes that drive the system toward

an expected pattern while allowing for annual

erosion and creation of floodplain patches. Alter-

natively, where floodplains exhibit multiple equi-

libria and transitions occur only when a threshold

is reached, restoration strategies must allow for

greater unpredictability in both rates of turnover

and associated biological outcomes.

It is well appreciated that at the patch or sub-

reach scale (10–1000 m2; defined as distinct sub-

strates such as gravel bars or associated biotic

communities), most alluvial floodplains may ex-

hibit persistent non-equilibrium conditions deter-

mined by multiple disturbance types, biological

legacies, and chance—resulting in divergent or

cyclical trajectories that rarely arrive at true equi-

libria. However, when viewed at the scale of the

reach, floodplains are often viewed as ‘pattern

stable’, meaning that the proportions of channel,

bars, islands, and floodplain are relatively constant

through 100s to 1000s of years (Beechie and others

2006a). Focusing on key processes and disturbance

regimes is especially critical where floodplains ex-

hibit non-equilibrium dynamics and follow multi-

ple pathways to similar (or different) endpoints.

Three basic questions underpin our synthesis of

floodplains in the Pacific Coastal Ecoregion (PCE;

Figure 1). They are: How can highly dynamic sys-

tems, subject to frequent and often powerful nat-

ural disturbances, remain so productive over the

long-term? What are the underlying environmen-

tal drivers of the dynamic, yet consistent, vegeta-

tive patterns? How are high tree production rates

sustained in spite of these apparently detrimental

influences? These questions have implications that

go far beyond floodplains, and the answers may lie

in basic biophysical processes underpinning biodi-

versity and productivity. In the PCE there is a

strong interaction, even a ‘tension’, between dis-

turbance regimes and biotic patterns in streams

(Naiman and Bilby 1998), riparian areas (Naiman

and others 2005b), and uplands (Waring and

Franklin 1979). Understanding fundamental pro-

cesses shaping the intricate characteristics of natu-

ral and semi-natural floodplains establishes a

foundation for successful rehabilitation and con-

servation programs.

In this article, we articulate the current under-

standing of processes contributing to patterns in
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riparian vegetation, provide a temporal model of

the biophysical drivers creating and maintaining

the ecological patterns of PCE floodplains, highlight

process-based approaches to floodplain recovery,

and suggest appropriate metrics for evaluating

floodplain condition and functions. Our perspec-

tives focus primarily on ecological patterns and are

most applicable to unregulated, laterally mobile

alluvial rivers in the PCE that drain valleys with

intact primary or secondary forests. This article

synthesizes nearly two decades of research from

Oregon, Washington, British Columbia and

southeast Alaska. Collectively, this research sug-

gests that ecological patterns in these forests are

maintained by a dynamic self-regulating regime

that balances disturbance intervals and scale-

dependent processes with the rapid reorganization

and growth of the floodplain community. We

acknowledge that prevailing paradigms about

floodplain ecology in the PCE are strongly influ-

enced by a handful of well-studied river systems

(for example, Queets River, Kadashan River). We

look forward to further examinations of other riv-

ers throughout the region, many of which remain

ecologically intact, that promise new and deeper

insights into key biophysical processes affecting

broader ecological patterns.

PACIFIC COASTAL FLOODPLAINS

An Overview

The PCE is a geologically young region with a

highly variable lithology. The geography is domi-

nated by the Cascade Mountains and coast ranges

(including the Olympic Mountains) in the north-

western USA and the Coast Mountains in western

Canada and southeast Alaska. The mountains are

comprised of continental rocks uplifted in the Late

Cenozoic, which form peaks commonly exceeding

3000 m elevation (three peaks exceed 4000 m: Mt

Waddington, Mt Shasta and Mt Rainier). In British

Columbia and SE Alaska, the terrain drops steeply

into the Pacific, creating a fjord-dominated coast-

line. In southern-most British Columbia, Wash-

ington and Oregon, many mountains are further

from the coast and rivers flow west into a trough

forming the Strait of Georgia, Puget Sound, the

lower Columbia River, and the Willamette Valley.

Other rivers in coastal Oregon, Washington, and

southern British Columbia flow directly into the

Pacific Ocean or into the Strait of Georgia. Glacia-

tion prior to 16,000 YBP carved wide valleys and

deposited till, outwash, and lake deposits in the

trough and the main valleys (Booth and others

2003). This physical (that is, litho-topographic)

template contains channel networks characterized

by steep headwater streams on bedrock, moderate-

gradient reaches in mid-basin where thick deposits

of glacial sediments dominate, and wide floodplains

Figure 1. The Pacific Coastal Ecoregion (PCE) of North

America, a region receiving from one to seven or more

meters of annual precipitation, ranges over much of the

West Coast from northern California to southeast Alaska.

Major physiographic features and rivers mentioned in

the text are highlighted.
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in low-gradient valleys approaching the coast

(Beechie and others 2001).

The PCE receives 1–7 m/year of precipitation

over a north–south gradient of around 2000 km

(Naiman and Anderson 1997). Mountain ranges

cause strong orographic effects, with mean annual

precipitation increasing dramatically from coasts to

headwaters, and generally higher precipitation on

the western slopes (up to 7 m/year) and rain

shadows on eastern slopes (as low as 45 cm/year).

The approximately 200 rivers originating in the

PCE have dynamic but predictable hydrologic re-

gimes that vary with latitude. Unfortunately, to

date there are no analyzes of latitudinal gradients

in flood frequency or intensity for the region. Most

precipitation falls during discrete autumn and

winter storms; less than 10% falls during summer

(July–September). Hydrologic regimes are one of

three types: snowmelt-dominated in high-eleva-

tion rivers (most runoff occurs during spring and

summer snowmelt), rainfall-dominated in low-

elevation rivers (most runoff occurs in fall and

winter storms), and transitional in mid-elevation

rivers (transient snow-zone—both winter and

spring peaks occur; Beechie and others 2006b). The

largest floods in all three hydrologic regimes occur

during powerful fall and winter storms when rain

falls on snow.

The PCE floodplains support high regional bio-

diversity and historically productive salmon (On-

corhynchus spp.) populations, yield abundant clean

water, and are well known for large and rapidly

growing endemic trees (Waring and Franklin 1979;

Van Pelt 2001; Naiman and others 2005b). In

general, the valley bottoms are dominated by

mixed communities of willow (Salix sp.), red alder

(Alnus rubra), black cottonwood (Populus balsamif-

era trichocarpa), bigleaf maple (Acer macrophyllum),

Sitka spruce (Picea sitchensis), Douglas-fir (Pseudots-

uga menziesii), western hemlock (Tsuga heterophy-

lla), western redcedar (Thuja plicata) and, in the

southern-most regions, coast redwood (Sequoia

sempervirens; Franklin and Dyrness 1973). Late-

seral floodplain forests tend to be dominated by

conifers, although black cottonwood also domi-

nates mid-seral lowland rivers from Oregon to SE

Alaska. The large sizes of the trees render them

uniquely capable of shaping in-stream conditions

as dead wood (Gregory and others 2003).

Plant community patterns and processes in PCE

floodplains are well documented, but only in spe-

cific locations (for example, Fonda 1974; Hanley

and Brady 1997; Van Pelt and others 2006). For

example, it is known that vegetation composition

in PCE floodplains varies considerably among

patches of different ages, and that PCE floodplain

forests are among the most productive in the world

(McKee and others 1982; Means and others 1996;

Balian and Naiman 2005). However, the most

complicated patterns and the highest tree produc-

tion rates occur in environments where lateral river

movements actively undercut streamside forests

(for example, O’Connor and others 2003; Latterell

and Naiman 2007) and rapid leaching of nutrients

from soils is common (Bechtold and others 2003;

Bechtold and Naiman 2009a).

General PCE Floodplain Dynamics

Two defining characteristics of the alluvial flood-

plains are their distinct vegetative patterns, and the

recurrent destruction and reformation of soils and

vegetation as rivers move laterally within valley

bottoms (Figure 2). Both characteristics are main-

tained by annually strong floods that erode some

floodplain patches while depositing new sediments

on other floodplain patches (Naiman and others

1992, 2005a, 2008). A key feature of floodplain

formation is the rapid stabilization of new land-

forms, which is catalyzed by four interacting com-

ponents and processes. They are: the presence of

large wood (LW; Fetherston and others 1995; Abbe

and Montgomery 1996; Latterell and others 2006);

rapid development of fertile soils driven by the

accumulation of organic matter (OM) through fine

sediment deposition and sediment weathering

(Bechtold and Naiman 2009b); variable distur-

bance return intervals for different-aged landforms

that direct a successional sequence of species

replacements (Balian and Naiman 2005; Van Pelt

and others 2006); and a channel migration zone

characterized by frequent oscillation, avulsion, and

meander cutoffs, as opposed to the unidirectional

sweep of a meandering channel across the valley

bottom (O’Connor and others 2003). Collectively,

these processes sustain inputs of LW-capable trees,

which are potent agents of floodplain reorganiza-

tion (Abbe and Montgomery 2003; Latterell and

Naiman 2007).

This channel movement regime creates sub-

stantial environmental heterogeneity supporting

the development of a heterogeneous plant com-

munity pattern (Pollock and others 1998; Naiman

and others 2005a, b; Latterell and others 2006).

Riverine landforms are strongly coupled to LW

accumulations. The common landforms often pro-

gress from bars to floodplains to terraces as the

associated succession of vegetation progresses from

colonizing willow, alder, and cottonwoods to

mixed-species mature forests to old-growth conifer

4 R. J. Naiman and others



forests (Figure 3). However, river-caused erosion

can reset this process at any developmental stage,

maintaining a distinctive mix of landforms and

forest types through time. A key process driving

this complex pattern is the initiation of bar and

island formation by LW deposition, which helps

sustain the mosaic of landforms and forest types

(Fetherston and others 1995; Abbe and Mont-

gomery 1996). The resultant dissection of PCE

floodplains creates a structurally complex envi-

ronment with abundant edge length, facilitating

the development of open, multi-storied canopies

containing prolific and diverse epiphytic commu-

nities (Van Pelt and others 2006, unpublished

Figure 2. Twentieth century disturbance maps for two study reaches along the Queets River in the Olympic Mountains.

The 16 dates represented are not necessarily specific years of major river action, simply the years for which accurate spatial

data were available. The maps therefore represent a minimum of river activity; a complete coverage would undoubtedly

show as of yet unmapped river movements. Adapted from Van Pelt and others (2006).

Figure 3. Biophysical model for the middle Queets Valley in the Olympic Mountains. Purple arrows indicate the primary

biophysical pathway, whereas the light blue arrows indicate possible secondary pathways. Yellow is used to indicate the

primary landforms along the primary biophysical pathway, whereas orange indicates landforms along secondary bio-

physical pathways. Dark blue text refers to geomorphic events occurring during that stage of the pathway, whereas green text

relates to forest developmental events. The outer curve represents an approximate time line of these developments. Keep

in mind that all landforms can return directly to the primary channel box during severe flood events. Adapted from Van

Pelt and others (2006).
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data). River-floodplain dynamics in PCE flood-

plains also drive key feedbacks from the floodplain

to the aquatic environment, such as delivery of

dissolved OM (DOM) to hyporheic zones (Clinton

and others 2002), transfers of hyporheic P and N to

surface channels (Fevold 1998), and movement of

organic and sedimentary materials during flood-

plain erosion (Bechtold 2007).

This understanding of PCE floodplain dynamics

establishes a foundation for a more comprehensive

description of biophysical drivers and ecological

responses over time. The basic information used to

formulate a more comprehensive system-scale

floodplain model is presented in the following two

sections. First, we address key physical drivers

(geomorphology, alluvial soils, subsurface water,

and large wood) before addressing ecological pro-

cesses (ecophysiology, vegetative succession, soil

nutrient cycles, marine-derived nutrients, canopy

epiphytes) underpinning floodplain patterns and

tree productivity.

PHYSICAL DRIVERS

Interaction of the PCE’s complex geography with

ecological processes—across broad spatial and

temporal scales—is central in forming the emergent

floodplain patterns and processes. Geophysical

controls on structure and productivity can be

hierarchically arranged at five scales (patch, reach,

valley, catchment, and region), and these controls

interact with four important ecological processes

within individual patches (soil formation, nutrient

dynamics, vegetative initiation, plant succession;

Table 1). Collectively, they produce the diverse

biophysical patterns exhibited by PCE floodplains

(Figure 4). In such nested hierarchies, local envi-

ronmental attributes (for example, nutrient fluxes,

productivity) are controlled by soil and moisture

characteristics at the site. However, these site

characteristics are nested within and controlled by

larger scale features, including patch-scale distur-

bance history, reach-scale channel dynamics, and

valley or catchment-scale controls on channel

pattern (Beechie and others 2008a).

The Geophysical Template

The hierarchical suite of physical influences creates

riverscapes where downstream changes in channel

pattern and floodplain dynamics are predictable

(Naiman and Sedell 1979; Beechie and others

2006b). The geophysical (for example, litho-topo-

graphic) template controls downstream patterns of

channel slope, width, and discharge, as well as

locations of confined canyon reaches and uncon-

strained valleys (Figure 5). The uppermost reaches

often have high bed load supply and relatively

steep channel slopes, contributing to a braided

channel. Downstream abundant LW and a

decreasing bed load supply, combined with

increasing plant root strength, promote a transition

to a relatively dynamic, island-braided channel.

The lowest reaches tend toward a slowly mean-

dering channel pattern, characteristic of channels

dominated by suspended sediment loads (that is,

low bed load supply). In the PCE, meandering

reaches tend to be in low gradient, lowland valleys

(for example, Quinault River, O’Connor and others

2003; Snoqualmie River, Collins and others 2003).

Steep terrain, unstable geology, and high pre-

cipitation drive an active erosion regime with

highly episodic sediment delivery to rivers and

floodplains (Benda and Dunne 1997). Thus, head-

water streams are sediment limited in most years

but never fully depleted, with rare episodes of high

sediment supply when landslides occur (for

example, Martin and others 2002). Year-to-year

variation in sediment supply decreases down-

stream, as increasing drainage area and desyn-

chronization of tributary sediment fluxes integrate

sediment pulses and dampen temporal variation in

supply. In general, rivers and associated floodplains

with drainages larger than 200 km2 tend to trans-

Table 1. Dominant Processes Underpinning Floodplain Tree Productivity as a Function of Spatial Scale

Spatial scale Key processes

Vegetative patch (101–103 m2) Water regime; hydraulic shear stress; herbivory; nitrogen fixation, weathering of

sediment P and cations; nutrient retention; epiphytic influences; microclimate;

microtopography

Catchment (102–104 km2) Local lithology; sediment deposition and erosion; sediment texture; deposition

and patterns of LW; marine-derived nutrients; biophysical legacies

Regional (104–106 km2) Lithology; tectonic processes; topography; precipitation and temperature regimes;

disturbance regimes; species assemblage; ocean proximity; biophysical history

Continental (>107 km2) El Niño, La Niña cycles
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port relatively consistent bed loads. In these sys-

tems, the uppermost reaches tend to have low to

moderate sediment supply and are therefore either

straight reaches or island-braided reaches. The

synergism between high precipitation and erosion

can result in relatively large floodplains; catch-

ments can have up to 25% of their ridge-to-ridge

area occupied by floodplain (McKee and others

1982). It is conceivable that after major precipita-

tion events the availability of new surfaces for

colonization will be at a maximum for a few years

post disturbance. However, the available evidence

suggests that the floodplains and their forests ex-

hibit relatively stable habitat distribution patterns

when the hydrologic regime is within long-term

norms (Kloehn and others 2008; Latterell and

others 2006).

Alluvial Soil Development

Alluvial soils are a foundation for the expression of

plant community traits. PCE floodplains are formed

from the abundant sediments; legacies of Pleisto-

cene glaciations (Figure 6). Although newly

deposited sediments are ideal environments for

hardy colonizing vegetation, fertile soils capable of

Figure 4. Biophysical

complexity at the scale of

individual trees or plots is

ultimately controlled by a

nested hierarchy of

processes operating at

larger scales. Illustrated

here is but one of

numerous examples that

could demonstrate this

principle. Starting at the

top of the figure, the

biophysical complexity of

a single tree is a function

of basal area through

time, which is controlled

by the age of the growing

surface, which in turn is

controlled by the reach-

scale channel pattern and

age structure of the

floodplain, which is then

a function of watershed-

scale controls of valley

slope and dominant

discharge. PISI Sitka

spruce (Picea sitchensis);

TSHE Western hemlock

(Tsuga heterophylla); ALRU

Red alder (Alnus rubra);

POTR Black cottonwood

(Populus balsamifera

trichocarpa); ACMA Bigleaf

maple (Acer

macrophyllum).
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supporting more sensitive, late-seral, and highly

productive floodplain forests develop within a few

decades. Intense fluvial sorting results in a common

pattern where there is often a less than 2 m ‘‘cap’’

of sand/silt/clay over cobble-sized bed sediments.

Silts and clays, which play critical roles in retention

of nutrients and water, tend to be concentrated in

the uppermost part of the soil cap (Latterell and

others 2006).

Four discrete stages of alluvial soil development

are observed (Bechtold and Naiman 2009a); ini-

tially, sand is deposited over coarse bed sediments.

This commonly occurs where colonizing willow

and alder, and LW jams, create resistance to flow.

Aggradation of floodplain landforms along point

bars or abandoned channels occurs rapidly, with

most physical floodplain construction taking place

within the first decade or two. The aggradation of

floodplain surfaces is caused by either free-formed

deposits, or in association with LW, vegetation, or a

combination of both. Rapidly growing seral forests

usually develop during this period, and soils receive

large inputs of OM, N from N-fixing red alder and

rock-derived nutrients (P, cations) from sediment

weathering. However, these sandy soils contain

limited OM, have limited capacity to retain water,

and nutrients are easily leached (Bechtold and

others 2003).

Following this initial period of aggradation, there

is a transition from bed load deposition to sus-

pended sediment deposition within individual

patches. Silt and clay deposited during this phase of

floodplain development critically influence a soil’s

capacity to retain nutrients and water, as discussed

later. The most fertile soils within these coarse-

textured environments are the ones receiving the

Figure 5. Illustration of typical downstream transitions

in channel pattern for the Nisqually River in the Cascade

Mountains, and lithological controls on transitions.

Simplified geological cross-section A–A’ shows bedrock

underlayment in the steeper, upper reaches of the basin,

and glacial sediments filling the lower reaches near the

Puget Lowland. Resistant bedrock forces relatively steep

main channels (braided and island-braided) and tribu-

taries confined between valley walls, whereas erodible

glacial sediments promote development of low gradient

meandering channels and unconfined tributaries. Vari-

ants of this sequence of channel patterns are common

throughout the PCE.

Figure 6. A simplified, graphic model of a PCE flood-

plain depicting many stages of landform and forest

development. Closest to the river are gravels and cobbles,

which are the primary initial substrate in active moun-

tain floodplains. Stability to these surfaces is usually

provided by large wood, often in the form of jams. Fine

sediments and OM (fines; less than 1 mm diameter) are

deposited on top of these as brief inundations allow fines

to fall out of suspension in slow-moving water. If not

reworked by the river, colonization by shrubs (willows)

and trees (alders) follows, which attract further fines and

coarse wood deposition. If allowed to persist into a sec-

ond century, mature conifer forests may develop. Due to

the dynamic nature of rivers within the PCE, and the

dramatic differences between summer low flows and

flows following rain-on-snow events, evulsions, steep

incisions, and anastamozing patterns are common. This

can lead to below-ground sediments that are a mixture of

many textures, including buried wood and other organic

matter. The hyporheic flows (blue areas and arrows) are

highly varied in both volume and velocity due this be-

low-ground mixture of sediment texture.

8 R. J. Naiman and others



greatest overbank deposition of suspended sedi-

ments. Eventually, sufficient deposition occurs that

direct inundation of developing alluvial surfaces

becomes infrequent. From this point forward, soils

on terraces can be thought of as a nearly fixed

physical template. Subsequent alteration of soil

character and function is primarily by pedogenic

processes, with little direct fluvial influence. Fi-

nally, soil destruction results from channel migra-

tion. Floodplains experience recurrent soil

destruction and reformation faster than most of any

terrestrial ecosystem. For example, floodplains on

the Olympic Peninsula, Washington, have half-lives

of only 200–500 years (O’Connor and others 2003),

with internal turnover times varying greatly

depending on the specific patch type (Latterell and

others 2006). Rather than being an endpoint,

floodplain destruction is best considered as one

stage of a cyclic process during which floodplain

soils undergo large changes in pattern and function.

At larger scales, differences in channel slope,

valley constraint, and sediment supply lead to

highly heterogeneous distributions of floodplain

soils differing in sediment character and pedogenic

development. These patterns of sediment deposi-

tion underpin soil fertility and plant production

throughout stand development, and shape surface

and subsurface water flows.

Subsurface Water: The Hyporheic Zone

Hyporheic zones underlying floodplains are typi-

cally spatially extensive and hydraulically conduc-

tive due to abundant coarse glacial sediments and

dynamic flow regimes (Edwards 1998). Locally,

hyporheic-related ecological patterns may be

exemplified by those of the Nyack floodplain of the

Flathead River, Montana (Stanford and Ward 1993;

Poole and others 2006). In that location hyporheic

upwelling is an important source of nutrients in

off-channel aquatic habitats, and hyporheic water

provides important moisture and nutrient subsidies

to some trees (Harner and Stanford 2003).

The relation between the overlying vegetation

and the hyporheic zone is complicated, and the

understanding of the interaction is far from com-

plete. Our sense is that hyporheic zones are

important water sources for colonizing vegetation

but probably not for PCE vegetation on mature

landforms. Survival of colonizing trees during the

first decades depends on access to water (Naiman

and others 2005b). In thin soils, alder survive only

along banks and other low-lying areas with sub-

surface water sources, and this often results in

narrow bands of alder along the banks of coarse-

textured terraces, where alder could not otherwise

survive (Figure 7A). Hyporheic areas are generally

not sources of water or nutrients to vegetation on

older landforms, which are typically 3–4 m above

the summer water table (Clinton 2001). In general,

2–3 m of coarse bed sediments eliminates any

possibility of capillary movement of hyporheic

water into the rooting zone. Roots in the mature

conifer forest are normally directed toward the soil

surface, with limited root penetration into cobbles.

Large Wood: Sources and Dynamics

PCE rivers are renowned for LW accumulations

(see reviews in Bilby and Bisson 1998; Gregory

Figure 7. A A colonnade of red alder trees along bank of

a floodplain terrace. Spatial variation in sedimentary

landforms creates complex environments for establish-

ment of floodplain vegetation. Here, red alder trees are

able to colonize banks, where they can grow in full sun

and access subsurface water. B During the primary bio-

physical pathway, small conifer seedlings are eliminated

by burial during the primary shrub and hardwood tree

colonization. Instead, they must wait for several decades

until the short-lived hardwoods die and release growing

space, as depicted here.

Pacific Coastal Floodplains 9



and others 2003), which contribute to habitat

formation for Pacific salmon and the creation of

stable forested landforms (Montgomery and Abbe

2006). The mass of LW varies greatly within a

river as well as among rivers according to eleva-

tion, channel pattern, and forest composition

(McHenry and others 1998; Abbe and Montgom-

ery 2003; Beechie and others 2006a). Variation in

patterns of LW accumulation, delivery, retention,

and longevity have important feedbacks on the

establishment and persistence of depositional

landforms and the forests that grow on them

(Abbe and Montgomery 1996; Gurnell and others

2005). In PCE floodplains, LW accumulates in

logjams of many arrangements. Some form rec-

ognizable, distinctive structures, such as arrow-

head-shaped ‘bar apex’ jams which often create

perennial floodplain scour holes and forested is-

lands, or ‘meander jams’ that can bend the river

and elevate the streambed and the water surface

(Abbe and Montgomery 1996; Brummer and

others 2006). A single jam often contains a het-

erogeneous mixture of fresh whole trees, partial

stems splintered and abraded by the river, and

remnant boles made brittle by terrestrial decay

(Latterell and Naiman 2007).

Large wood delivery to floodplain rivers has

rarely been quantified, but a few studies indicate it

is mainly supplied by lateral movements (mean-

dering, avulsions, and cutoffs). This is especially so

along unconstrained river reaches, which undercut

and topple trees and redistribute the pieces into

logjams during high flows (Benda and Sias 2003;

Latterell and Naiman 2007). At other locations in a

drainage network, wind throw, fire, or landslides

may be the dominant delivery processes. Some

primary channels also receive substantial inputs

from local landslides (Reeves and others 2003).

All river-fringing forests provide LW to rivers,

but old forests (for example, mature fluvial ter-

races) are the most important sources of large

pieces of wood capable of initiating logjams (Abbe

and Montgomery 1996; Montgomery and Abbe

2006; Van Pelt and others 2006; Latterell and Nai-

man 2007). LW from these mature forest patches

influence channel form and floodplain processes in

a manner that smaller pieces of wood typically

cannot (Fetherston and others 1995; Montgomery

and Abbe 2006). Though old forests may cover

most of the floodplain, they may border only a

minority of the active river channel. In island-

braided and meandering portions of rivers, older

floodplain forests commonly fringe the outside of

eroding river bends, critical source areas for LW

(Latterell and Naiman 2007). Mature trees on

fluvial terraces are often lacking along modified

rivers (Collins and others 2002).

Young forests often dominate banks and bars due

to rapid channel migration and forest turnover

rates, particularly in braided systems. When dense

thickets erode, large numbers of pieces—usually

red alder and cottonwood—are captured and

amassed against more stable LW. These stands also

contain remnant and buried logs deposited histor-

ically by the river and contributing to the estab-

lishment of contemporary vegetation on the site

(Hyatt and Naiman 2001).

Many PCE rivers are physically capable of

transporting stand-dominant trees to downstream

reaches. Thus, LW loading reflects local and up-

stream sources (Swanson 2003; Latterell and Nai-

man 2007). For example, transport may be helpful

in maintaining LW abundance in reaches where

channel migration is very slow (that is, resulting in

low rates of recruitment from local sources; Martin

and Benda 2001) or very fast (that is, preventing

the growth of large-diameter trees; Beechie and

others 2006a). Once a tree falls into the river, it

may remain on site forming a jam in situ or be

transported downstream. Logs that remain stable

for long periods tend to have large diameters rela-

tive to the bankfull depth, tend to retain their

rootwads, and are long relative to the width of the

channel (see Abbe and Montgomery 2003).

Case studies of the Queets River, Washington,

provide insights into the dynamics of large wood in

floodplain rivers. In one study, LW generally ap-

peared to be most vulnerable to displacement 1–3

years after initial deposition (Figure 8; Latterell and

Naiman 2007). Empirically based simulations sug-

gested that many transported logs are eventually

retained in locations where they remain stable long

enough for floodplain vegetation to establish. As

time progresses, the LW is less and less likely to

move. An earlier study demonstrated that 98% of

bar-apex jams associated with forested islands re-

mained stable over a period of 8 years (Abbe and

Montgomery 2003). Vegetation primarily helps to

stabilize logs by adding root cohesion in the

deposited sediments and by adding weight on top

of the jam (Abbe and others 2003), as well as by

dissipating stream energy and facilitating deposi-

tion of sediments.

The longevity—or residence time—of LW varies

greatly within individual floodplains (Hyatt and

Naiman 2001), among rivers across a gradient of

size and elevation (Beechie and others 2006a) and

among trees (Graham and Cromack 1982; Harmon

and others 1986). Studies from the Queets River

suggest that a minority of logs remain in the river
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for more than 50 years, but some important frac-

tion is preserved—likely through burial—for many

centuries (Hyatt and Naiman 2001; Abbe and

Montgomery 2003; Montgomery and Abbe 2006).

Collectively, the patterns and processes in geo-

morphology, sediment origin and delivery, soil

texture, hyporheic water flow, and LW provide the

foundation for discussing key ecological processes

contributing to tree production and for eventually

providing a better understanding of system-scale

floodplain dynamics.

ECOLOGICAL PROCESSES UNDERPINNING

FLOODPLAIN PATTERNS AND TREE

PRODUCTION

Vegetative patterns on floodplains are strongly

influenced by species-specific physiologies inter-

acting with the temporally shifting combination of

processes associated with sediments, nutrients, and

LW (Swanson and others 1982; Tockner and others

2003). The nutrients have geologic, atmospheric,

and oceanic sources—and the dominant source

changes during succession. Nutrient location,

delivery, and availability are mediated by soil

organisms, anadromous fishes, and canopy epi-

phytes. The LW acts to spatially concentrate organic

matter and nutrients, and also shape energy re-

gimes, thereby providing habitat for plant devel-

opment. Basic changes in plant community patterns

and ecological processes occur mainly through the

shifting of their relative vertical position on the

floodplain and the degree of annual flooding (Junk

and others 1989). Further, the broad valley floors

allow the development of a variety of backwater

and seasonal channels, each of which offer con-

trasting micro-environments for biotic patterns and

processes. In this section, we discuss key processes

underpinning patterns in floodplain vegetation,

their temporal dynamics and, collectively, their

relation to tree production.

Ecophysiology of Coastal Floodplain
Trees

Several physiological characteristics of PCE flood-

plain plants are key to their success: formation of

adventitious roots, symbiotic N-fixation, tolerance

to abrasion when young, and tolerance to sub-

mersion in water for extended periods. Many of the

adaptations are essential for survival, particularly in

the earliest stages of succession. For example, even

though seeds are generally widely dispersed, most

willow and cottonwood germinate only in the

moist zone near waterlines (McBride and Strahan

1984; Stettler 2009). Small-seeded species tend to

exhibit successful germination sporadically as

compared to larger-seeded species, which exhibit

more consistent survivorship, though rates are

lowered by the stresses of drought or flooding

(Krasny 1986; Streng and others 1989; Stolnack

and Naiman 2010).

The ability of willow and cottonwood to sprout

roots from portions of their stem after being re-

moved from the tree is well known (Carlson 1950).

Root primordia develop in the stem and sprout

from buds. Adventitious root formation begins after

most of the primary tissues of the new shoot have

formed and then become dormant by the end of

the first growing season. Depending on stem age,

primordia rapidly develop into roots when placed

in water. This is an advantage when willow pieces

broken off the main plant are buried in newly

deposited river sediments. Riparian willows devel-

op roots on all portions of submerged stems,

whereas terrestrial willows do so only at basal ends

of cuttings (Densmore and Zasada 1978). Conifers

generally do not posses this capacity but western

redcedars reproduce readily from branch layering

(Schmidt 1955; Minore 1983). Like willow and

cottonwood, Sitka spruce and western redcedar

also maintain shallow root systems, enabling

growth in areas with high-water tables. Sitka

spruce and western hemlock have the added abil-

ity, particularly in shady environments, to suc-
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Figure 8. Relationship between large log retention

(percentage of logs remaining stable) and the years

elapsed (years) since the cohort was deposited in the

active channel in the mainstem of the Queets River in

the Olympic Mountains. Each point represents a different

cohort (n = 14). The average number of large logs in a

cohort was 108, ranging from 12 to 361 logs. From

Latterell and Naiman (2007).
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cessfully colonize elevated organic substrates

such as logs and root wads (Pojar and MacKinnon

1994).

Alder is the only tree in the PCE to develop a

symbiotic relationship with nitrogen-fixing bacteria

(Deal and Harrington 2006). Fresh sediment sur-

faces often lack much OM and are challenging

places for tree seedlings seeking nutrients. Because

nitrogen availability is a primary limitation to tree

growth, once water needs are met, this symbiotic

relationship affords alder a competitive advantage

on fresh gravel bars. However, alder sprouting from

seed on new gravel bars will not always have the

mycorrhizal and actinomycete associates that are

available on upland sites with well-developed soils

(Walker and others 1986; Fisher 1990). There may

be slow initial growth rates for several years com-

pared to alder on upland sites while these associates

are established (Van Pelt 1991).

Complete inundation of plants eventually results

in mortality but the ability to tolerate inundation

varies by species (Hosner and Boyce 1962; McBride

and Strahan 1984). Also, partially inundated plants

survive longer than those totally submerged. In

general, willow are most tolerant of flooding but

cottonwood are similarly tolerant (Stettler 2009).

Western redcedar, Sitka spruce, and red alder have

a fairly high tolerance of excess moisture, whereas

western hemlock, grand fir, and Douglas-fir do

poorly with excess water (Minore 1979). The net

result is that vegetative patterns reflect interactions

between the plants’ physiological breadth and the

spatial pattern of micro-environments, as well as

the riverine disturbance regime.

Vegetative Succession

There are several highly generalized successional

pathways that vegetation can follow between ger-

mination on newly created surfaces to the time that

floodplain forests reach maturity (Van Pelt and

others 2006). Such pathways can be illustrated in

simple heuristic models (Figures 3 and 4). In one of

these pathways (Path 1), newly created surfaces are

quickly colonized by vegetation. Subsequently,

characteristics such as valley constraint, river size,

local landform development, substrate texture, and

herbivory strongly influence the development of

the plant communities (Schreiner and others 1996;

Rot and others 2000). In most situations, willow,

alder, and cottonwood are often the first to estab-

lish (Figures 3 and 4). The physiological tolerance

of these tree species to inundation is advantageous,

as many of the newly created surfaces spend hours

to weeks under water-saturated, light-limited

conditions in winter. Small seedlings of several

conifer species also sprout on moist surfaces but

few tolerate the frequent winter scouring, sediment

deposition, and inundation. Mortality is high

among early colonizers, as newly created surfaces

shift in size and shape until stabilized and also be-

come extremely hot and dry during summer low

water (Stolnack and Naiman 2010). In addition,

herbivory by beaver (Castor canadensis) and elk

(Cervus elaphus) has a significant impact on plant

communities (Schreiner and others 1996; Naiman

and Rogers 1997; Beschta and Ripple 2008). These

conditions also contribute to the high mortality of

conifers in the young stands that follow this path-

way, except those associated with LW accumula-

tions.

As discussed earlier, the creation of new surfaces

results from the destruction of older surfaces. The

great dimensions of trees in older forests mean that

sizeable accumulations of wood form in the river,

and they interact with river flows (Abbe and

Montgomery 2003). As water flows are diverted by

log jams, quiet areas immediately downstream

accumulate sediment and become bars (Abbe and

Montgomery 1996). These jam-protected bars can

be relatively stable surfaces for many years,

allowing trees to thrive. At higher elevations,

smaller high-energy floodplains are cobble-domi-

nated, which favors early successional willow and

alder (Van Pelt 1991). Bar surfaces of large rivers at

lower elevations are generally composed of

increasingly finer sediments that are ideal for cot-

tonwood (Braatne and others 1996). Subsequent

deposition of fine, soil-forming alluvial sediments is

greatly enhanced by vegetative establishment,

which increases resistance to water flow (Bennett

and Simon 2004). These concurrent events elevate

both the nutrient pool and soil moisture-holding

capacity.

Rapid tree establishment and growth during the

first few decades after colonization generally result

in dense stands of alder and cottonwood overtop-

ping and shading willow species (Van Pelt and

others 2006). Although often dominant during the

first two decades, willow is nearly eliminated

within 30 years (Figure 4) and later replaced by

alder. Alder roots quickly become colonized by

Frankia, a filamentous bacterium converting

atmospheric N2 into ammonia—a form of nitrogen

available to plants. The N-fixation quickly converts

a nutrient-poor site into a nutrient-rich one, cre-

ating sites favoring ungulates (for example, elk,

deer) who can maintain open understories through

herbivory (Schreiner and others 1996). The stands

also contain substantial hardwood decay fungi, and
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soon (40–70 years) alder begin to die, opening the

canopy and allowing greater penetration of light.

Rich soils, partial shade, and more protection from

annual floods provide ideal conditions for the

establishment of shade-tolerant conifers.

At the northern end of the PCE, and at the ex-

treme coastal portions of the southern end of the

PCE, Sitka spruce is often dominant during the

second century. In parts of the Cascade Mountains

and in southern British Columbia, Douglas-fir or

grand fir (Abies grandis) is often the main conifer

species to establish (Van Pelt 1991; Figure 7B).

However, in other parts of the Cascades and in the

coastal mountains of Oregon and Washington

(except close to the ocean), western hemlock is the

most common conifer underneath older alder in

riparian settings—especially floodplains (Villarin

and others 2009). Rapid conifer growth quickly

converts a hardwood stand into a conifer stand as

alder dies. Understories of maturing conifer stands

are colonized by other tree and shrub species,

including maples (Acer circinatum and A. macro-

phyllum), western redcedar and western hemlock.

For floodplains where the channel is laterally

dynamic, the river ultimately returns to destroy the

forest, starting the process again. A well-studied

example is the Queets River where much of the

unconstrained valley floor has been reworked by

the river during the 20th century (Figure 2), which

sustains a diverse mix of landforms and forest

types. In the context of the PCE, the Queets River

exhibits an intermediate rate of floodplain turn-

over, which is characteristic of island-braided sites.

However, many of the region’s rivers have either

braided (more rapid floodplain turnover) or

straight or meandering (slower turnover) patterns.

That is, the average length of time a patch of

floodplain exists before the river returns to erode

it (the erosion return interval) is commonly less

than 10 years in braided channels, but more than

50 years in straight and meandering channels.

Average erosion return intervals are estimated to

be 100 years in the Queets (Montgomery and Abbe

2006), and even shorter intervals (for exam-

ple, 30 years) have been observed in other island

braided channel systems (Beechie and others

2006a). The broad range of turnover rates in the

PCE can be classified by channel patterns that re-

flect the age structure of floodplain surfaces (Fig-

ure 9), and the arrangement of these channel

patterns on the landscape is largely predictable

from channel slope and discharge.

Many variations exist to successional Path 1

along unconstrained reaches of river floodplains.

These variations depend on river size, elevation,

annual precipitation, geology and whether glaciers

are present upstream (Naiman and others 2005a).

For example, in some cases, a chute cutoff may

result in the partial abandonment of the mainstem

channel. If the cutoff channel deepens, flows may

inundate the mainstem channel less frequently.

Such scenarios allow early establishment and sur-

vival of conifers (Figure 3). Inundation may still

occur during high flows, but overbank flows of

water often lack the physical energy or duration to

kill small conifers. This situation can also result in

an abandoned channel becoming high and dry in

which the water table drops, becoming inaccessible

to colonizing vegetation. These sites are locally

common in the centers of large physical patches

and lead to extremely slow plant colonization. In

less dynamic rivers, where channel shifts are rare

or very slow, other disturbances such as fire or

insects may be more important in directing forest

structure than those caused by river movement.

There are three relatively recent human-driven

impacts on vegetative succession, and ultimately to

floodplain tree production, that require discussion.

They are seed dispersal (hydrochory—dispersal of

seeds by water—and seed banks), invasive plants,

and the eradication of predators that historically

controlled herbivory. Seed dispersal via hydrochory

is important for maintaining the diversity and ge-

netic continuity of riparian plant communities

(Nilsson and others 1991). Dams, however, may

reduce levels of hydrochory to downstream reaches

by trapping seeds within their impoundments.

Unfortunately, this subject has received little

attention in the PCE because most trees (for

example, alder, cottonwood, willow, as well as all

of the riparian conifers) have tiny, wind-dispersed

seeds. Seeds blanket the landscape and differences

in establishment are often due to other factors

(such as substrate texture, LW, light availability,

inundation regime, and/or water level). Neverthe-

less, Brown and Chenoweth (2008) have shown a

90% reduction in seed abundance and 84%

reduction in species richness below Glines Canyon

Dam on the Elwha River, Washington, suggesting

that this may be more important than previously

thought.

Further, vegetative succession and soil processes

in PCE floodplains may be increasingly compro-

mised by the proliferation of invasive plants. It has

been known for over two decades that invasive

plants are common on recently disturbed surfaces,

such as gravel bars, but tend to disappear as light

was limited by canopy closure at about 10 years of

age (DeFerrari and Naiman 1994). The number of

invasive species comprises about 25–30% of the
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native species richness, which is similar to that seen

along alluvial rivers in other parts of the world

(Hood and Naiman 2000). In general, the effects on

successional processes and riparian soil formation

have so far been minimal. However, with the

proliferation of scotch broom (Cytisus scoparius) and

knotweed (Polygonu) that is no longer the case. It is

now known that giant knotweed (P. sachalinense)

has profound effects on system-scale characteristics

(Urgenson and others 2009). Richness and abun-

dance (cover or density) of native herbs, shrubs,

and juvenile trees are negatively correlated with

knotweed density. Where knotweed is present (>5

stems m-2), litter mass of native species is reduced

by 70%. The carbon:nitrogen ratio of knotweed

litter is 52:1, a value 38–58% higher than that of

native red alder and willow. Resorption of foliar N

prior to leaf drop is 76% in knotweed but only 5–

33% among native woody species. By displacing

native species and reducing nutrient quality of lit-

ter inputs, knotweed invasion has the potential to

cause long-term changes in the characteristics of

riparian forests, their soils and the adjacent aquatic

habitats. These effects are likely irreversible with-

out a nearly complete eradication of knotweed.

Finally, the reduction of large predators, espe-

cially wolves (Canis lupus) and cougar (Puma con-

color) throughout much of the PCE may have

equally important effects on vegetative succession

in the floodplains. It has been postulated that the

age structure of black cottonwood and bigleaf ma-

ple in the western portion of Olympic National Park

shows significantly decreased recruitment (growth

of seedlings/sprouts into tall saplings and trees) as a

result of intensive elk (Cervus elaphus) browsing in

the decades following the loss of wolves (Beschta

and Ripple 2008). Regular recruitment of black

cottonwood and bigleaf maple occurred prior to the

Figure 9. The

generalized floodplain

and forest development

pathway in Figure 3 can

be tailored to specific

reach types to predict

expected forest

community structure.

Throughout much of the

PCE, straight channels

have slow turnover rates

(>80 years), most of the

floodplain consists of

fluvial terraces, and

forests are primarily late-

seral (conifer) species. In

contrast to this, braided

channels have high

turnover rates

(<10 years), most of the

floodplain is channels and

pioneer bars, and

vegetation is typically

early-seral (hardwood)

seedlings. Finally, island-

braided channels have an

intermediate turnover

rate (�30 years); a mix of

bar, floodplain, and

terrace surfaces, and a

mixture of forest types.
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extirpation of wolves. Following the removal of this

apex predator, and in the absence of human

hunting, the structure of the floodplain forests

suggests that the recruitment of palatable trees and

shrubs has declined. This outcome is consistent

with trophic cascades theory (Ray and others

2005), whereby a loss or reduction of large carni-

vore predation may initiate changes in herbivore

densities and altered foraging behavior that ‘cas-

cade’ to lower trophic levels. We suspect that this

phenomenon has occurred throughout the PCE

wherever the population dynamics of apex preda-

tors and their prey have been altered.

Soil Nutrient Cycling

Although initial nutrient availability may be low in

newly deposited coarse sediments, most floodplains

quickly develop fertile soils capable of supporting

highly productive forests. Young floodplain soils

(50–100 years old) typically receive large nutrient

inputs from rapid sediment weathering and N-fix-

ing plant species, but have poorly developed

mechanisms for retention. They can be considered

open systems as leaching losses are high due to

coarse soil texture. The transition to closed systems,

with much lower inputs but more efficient reten-

tion, is attained as plant community development

augments the efficiency of plant-soil nutrient

recycling through the accumulation of soil OM,

which buffers nutrient and water transfers between

soils and biota. Thus, the rapidity with which soils

develop the capacity to support vegetation and

accumulate soil OM influences nutrient availability

to older forests. This is strongly mediated by sedi-

ment distribution patterns, with rapid soil OM

accumulation occurring in newly deposited fine-

textured soils.

A major source of nutrients to alluvial flood-

plains is associated with fine sediments. As sedi-

ments move from less-weathered upstream

environments to downstream depositional areas

(Carey and others 2005; Porder and others 2007),

they expose ‘fresh’ surfaces as the sediments are

abraded. However, chemical weathering, only

weakly expressed in aquatic environments, is nec-

essary to release biotically available nutrients in

usable forms. Chemical weathering increases by 2–

3 orders of magnitude following deposition as

sediments are exposed to carbonic acid produced by

respiring plant roots and decomposing OM (Bland

and Rolls 1998; Schwartzman and Volk 1989). This

process releases large amounts of available P, a

nutrient often limiting primary productivity (Elser

and others 2007), as well as base cations (K+, Na+,

Mg2+, Ca2+). The base cations play important roles

in buffering soil and aquatic pH, in addition to

being ecologically important and occasionally lim-

iting nutrients (McLaughlin and Wimmer 1999;

Tripler and others 2006).

Phosphorus differs in solubility and weathering

rate from the base cations, leading to differing

catchment-scale patterns in its distribution and

biological availability. Because P weathers more

slowly and is far less soluble than the base cations,

most P inputs to floodplains are from particulate

matter deposition (Melack 1995). These particulate

forms include P adsorbed to sediments, unweath-

ered P within sediments, and P in organic debris.

Because base cations have relatively high solubility

and weathering rates, dissolved concentrations in

soil water tend to be high. These can be transferred

to soils through capillary movement—sometimes

resulting in salt crusts where evaporation from bare

floodplain surfaces is high, or via root uptake of

subsurface water.

Marine aerosols are a secondary source of cations

that may be important in some coastal floodplains.

Amounts are greatest in forests immediately bor-

dering on the ocean, with rainwater cation con-

centrations decreasing by half within the first

50 km inland (Blew and Edmonds 1995). These

aerosols may be a significant source of base cations

to older soils, where the original supply has been

depleted by leaching, and to canopy epiphytes.

Of the several sources of nitrogen to PCE flood-

plains, by far the greatest is N-fixation by Frankia

associated with red alder. N-fixation rates in alder

forests may exceed 300 kg/ha/year (Binkley and

others 1994)—high by even agricultural standards.

N-fixation appears to greatly exceed biological de-

mand during the first 50 to 100 years when red

alder is the dominant floodplain tree. The resulting

high nitrification rate of excess N has two conse-

quences: it leads to leaching of excess N and it

contributes greatly to soil acidification and weath-

ering. Following the transition from alder to conifer

forest N inputs are much lower, with free-living

bacteria in soil and especially LW, forming the bulk

of inputs in mature and old forests. In the southern

parts of the PCE, cyanolichens, particularly the N-

fixing lichen Lobaria oregana, supply up to 16 kg/

ha/year of new N (Antoine 2004).

The apparent indifference of N-fixation to the

available N supply raises the question: What con-

trols N-fixation rates in floodplains? Several studies

have found low N-fixation rates in early seral for-

ests limited by P (Pearson and Vitousek 2002). In

addition to directly benefiting vegetation, a high P

supply may thus play an important enabling role in
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the exceptionally high N-fixation rates often ob-

served in PCE floodplain forests. Simulation mod-

eling of fluvial deposition suggests that N inputs

from fluvial deposition of OM are minor in most

rivers, accounting for less than 10% of the N

accumulated during the first 100 years of flood-

plain development (Bechtold and Naiman 2009b).

Temporal patterns in retention and bioavailabil-

ity of nutrients and organic matter during flood-

plain soil development are equally important in

sustaining tree production. Although young PCE

floodplains receive large nutrient inputs, sustaining

high tree productivity on older surfaces with few

new nutrient inputs requires efficient recycling

mechanisms. Greater recycling efficiency is

achieved largely through close coupling of physical

(for example, adsorption) and biological (mineral-

ization, microbial immobilization, and plant up-

take) processes, as well as through the

accumulation of soil OM. Soil OM accumulation,

by incorporating nutrients within or adsorbed to

external surfaces of OM, plays a fundamental role

in providing temporary storage for almost all N, and

increasingly for P, as it is weathered from sedi-

ments. Soil OM retention, in turn, is strongly

influenced by sediment texture and mineralogy.

Adsorption of OM to clays, and to aluminum and

iron oxyhydroxide coatings on silt and clay, as well

as incorporation within aggregates, enhances

retention by reducing leaching and inhibiting

decomposition (Sollins and others 1996)—thereby

contributing to tree productivity.

The importance of nutrient and OM adsorption

has been amply demonstrated in older upland soils

but has an additional importance for floodplains. In

floodplains, fluvial sorting creates complex patterns

in sediment size distribution and biological reten-

tion mechanisms are initially poorly developed.

Field, laboratory, and simulation studies on the

Queets River floodplain demonstrate the far

reaching influence of sediment texture in control-

ling OM and nutrient processes. There, soils accu-

mulate carbon and nitrogen to plateaus during the

first 100 years. This occurs as silt and clay-sized

particles become highly enriched with adsorbed

organic matter (Figure 10). Soil clay concentration,

aluminum oxyhydroxides, and site age collectively

account for 93% of the variation in (0–10 cm

depth) soil carbon, with clay concentration being

the single greatest predictor (r2 = 0.74) of soil car-

bon concentration (Bechtold 2007).

Sediment texture also influences the retention of

organically bound nutrients. This is reflected most

strongly for N, almost all of which is contained

within OM. Soil OM establishes a sharply defined

upper limit for N retention in alder forest soils at

about 8% of soil C. Soil OM also becomes

increasingly important over time for maintaining

bioavailable P as it is increasingly weathered from

sediments. Over 80% of the weatherable P is re-

leased from sediments during the first 1000 years of

soil development, with the greatest portion being

transferred to organic forms (Bechtold and Naiman

2009b, c).
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Figure 10. Concentrations of C adsorbed to clay (A) and

silt (B) particles in flood deposits (rectangles) and soils

(circles; 0–10 cm depth) from a 0–1000 year Queets River

chronosequence. Adsorbed increased logarithmically for

both clay (y = 6.24 * ln(x) + 34.9, r2 = 0.72, n = 35) and

silt (y = 3.56 * ln(x) + 5.49, r2 = 0.53, n = 35). Soils were

ultrasonically dispersed prior to particle size separation.
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The supply of bioavailable nutrients in floodplain

soils is maximized by the relatively short turnover

times of soil OM—further contributing to tree

production. Respiration per unit soil C increases

over the first decade or so as rapidly decomposing

litter from the developing forest reaches a maxi-

mum, and then declines as soil OM increasingly

becomes dominated by the recalcitrant OM pools.

This results in a soil C turnover of about 10 years in

mature conifer forests (Bechtold and Naiman

2009b); slightly faster than the 12-year turnover

reported during secondary succession of forests on

abandoned agricultural land, and much faster than

the greater than 25 year turnover times in mature

upland forests (Harrison and others 1995).

In contrast to N and P, the highest base cation

concentrations are observed during the first few

decades of soil development, adding an additional

temporal aspect to nutrient processes. Base cation

retention is strongly influenced by the intense

leaching environment and by biological demand

(Bechtold and Naiman 2009c). Base cations leach

quickly under humid conditions (Bockheim 1980),

especially where decay of coniferous forest OM or

high nitrification rates in N-fixing forests contrib-

ute acids to soils (Johnson and Cole 1977; Van

Miegroet and Cole 1984). In the PCE, this leads to

rapid loss of calcium which is initially abundant in

river water and soils. Potassium, in contrast, dis-

plays a striking pattern of translocation to the up-

per soil profile over time, with only small overall

losses, suggesting intense recycling of K+ by vege-

tation (Bechtold 2007). A weaker pattern of up-

wards translocation is also observed for Mg2+.

Collectively, quantification of soil-nutrient pro-

cesses in PCE floodplains reveals their fundamental

controls on water quality as well as their impor-

tance in underpinning tree production.

Marine-Derived Nutrients

Another important nutrient source for floodplain

trees is marine-derived nutrients (MDN) carried by

spawning Pacific salmon. Alluvial PCE rivers are

essential habitat for five species of semelparous

salmon, which return to spawn and die in natal

streams (Quinn 2005). Where abundant salmon

remain, annual spawning migrations transport

substantial quantities of MDN from the fertile North

Pacific Ocean to relatively nutrient-poor, coastal

rivers and floodplains (Gende and others 2002;

Naiman and others 2002, 2009). The salmon-borne

MDN play important roles in shaping and main-

taining plant communities and soils. When salmon

are abundant, tree growth by most riparian species

(for example, Sitka spruce, Douglas-fir) is en-

hanced, whereas when salmon are removed, tree

growth declines (Helfield and Naiman 2001; Drake

and Naiman 2007). MDN effects vary by dominant

salmon species (for example, mass spawners, or

not), population abundance, distribution of

spawning areas, river geomorphology, background

nutrient loading, and the type and abundance of

biotic vectors responsible for spreading MDN

throughout riparian areas (Naiman and others

2009). People have been long aware of the impor-

tance of salmon-borne MDN for the productivity of

freshwater ecosystems in western North America,

and the rapidly increasing body of knowledge on

this topic supports this notion. Nevertheless, many

details associated with nutrient pathways, cycling

processes, and the ecosystem-scale consequences of

the MDN transfer remain a mystery.

The collective data suggest that the freshwater

portions of the salmon production system, as well

as the dynamics of local terrestrial plant and animal

communities, are intimately linked to MDN in

complex ways. At the same time, the ecological

importance of MDN, relative to other major nutri-

ent sources, is temporally and spatially dependent,

and influenced by the specific life histories and the

abundances of individual salmon stocks. For

example, mass spawners (O. gorbuscha, O. keta, O.

nerka; pink, chum, and sockeye, respectively) ap-

pear to have strong system-scale effects. Although

interactions among climate cycles, salmon, vege-

tation, predators, and MDN flowpaths and feed-

backs are complex, they also form an integrated

ecological system with a high degree of resilience

and productivity (Naiman and others 2009). This

complex system, and its inherent temporal and

spatial variability, encompasses important interac-

tions among salmon life cycles and the physical

setting, as well as numerous linkages to other

ecosystem components. For example, within

northern sections of the PCE where coastal brown

bear (Ursus arctos) are abundant, there are positive

synergistic interactions between bear, salmon,

floodplain tree growth, and fish habitat (Helfield

and Naiman 2006). Further, the removal of trees

(for example, Teigs and others 2008) or salmon

predators and scavengers negatively impact salmon

and the ecological importance of MDN to flood-

plain communities.

Canopy Development and the Roles
of Epiphytes

Large trees on floodplains support abundant epi-

phytes—plants that live on other plants—and they
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also play important roles in supporting tree pro-

ductivity. Often noticeable in moist forests, epi-

phyte accumulations only reach massive biomasses

in rain forests (Sillett and Antoine 2004; Williams

and Sillett 2007). In general, epiphytes serve at

least two important nutrient-related functions:

they contribute to the nutrient-gathering capacity

of the forest by greatly expanding tree surfaces and

increasing atmospheric deposition of nutrients

(Knops and others 1996; Nadkarni 1986), and some

fix N (for example, cyanolichens) supplying up to

16 kg N ha-1 y-1 (Pike 1978; Antoine 2004). Cy-

anolichens become dominant in old forests of the

less humid sections of the PCE, especially in the

southern Washington and Oregon Cascades.

Epiphytic bryophytes are major contributors to

canopy soils that develop on branches in coastal

rainforests (Ingram and Nadkarni 1993). These

sponge-like accumulations store water in the can-

opy (Veneklaas and others 1990), allowing desic-

cation-sensitive organisms to flourish high above

the ground. Throughout the PCE, most of the epi-

phytic biomass occurs as either lichens or bryo-

phytes. Bryophytes become dominant in the wetter

portions of the PCE, especially in the coastal

mountains from the Oregon Coast Range north-

ward. The dry mass of epiphytes and associated

dead organic matter held in the crowns of indi-

vidual trees can exceed 100 kg (Hofstede and oth-

ers 1993; Nadkarni 1984; Ellyson and Sillett 2003).

On the Queets River floodplain large individual

trees can have in excess of 500 kg of epiphytic dry

mass from bryophytes alone (Van Pelt and others,

unpublished data). Vascular plants also occur as

canopy epiphytes, especially on large trees in

coastal floodplains (Sillett 1999; Clement and oth-

ers 2001; Sawyer and others 2000). Recent work in

PCE redwood canopies indicates that individual

trees also can have more than 500 kg of epiphytic

dry mass and associated soil from a single spe-

cies—the leatherleaf fern (Polypodium scouleri; Sil-

lett and Van Pelt 2007).

Large accumulations of bryophytes need large

structures to support them. As a result, young

stands support relatively little bryophyte biomass.

Cottonwood, common in many of the river valleys,

grows rapidly and produces large structures during

the first century. Epiphytic dry mass values

exceeding 10 Mg/ha have been recorded in stands

as young as 120 years (Van Pelt and others,

unpublished data). Slower-growing conifers do not

develop sufficient structural features to support

high bryophyte biomass until late in the second

century. Cottonwood plays a crucial role in allow-

ing this biodiverse community to develop early.

The vertical distribution of epiphytic biomass is

strongly related to the structures present in the

canopy and is also influenced by light availability

(Sillett and Van Pelt 2007). As floodplain forests

advance from mature to old-growth, the peak in

the vertical distribution of biomass shifts upward,

while the peak in foliage distribution shifts down-

ward. The deep soils derived from epiphytes on

large limbs and in crotches are favorable sites for

adventitious rooting from the host tree—further

contributing to productivity. First noted on bigleaf

maple (Nadkarni 1981), adventitious roots are now

known to be common in Sitka spruce, black cot-

tonwood, vine maple, western redcedar, and coast

redwood, wherever epiphytic soils are abundant

(Sillett and Van Pelt 2007; Van Pelt and others,

unpublished data).

Canopy epiphyte communities contain many

species. The epiphytic communities contain over

100 species of bryophytes, lichens, and vascular

plants—many only found in old-growth forest

canopies (Nadkarni 1984; Ellyson and Sillett 2003;

Williams and Sillett 2007). In addition, canopy

epiphytes provide habitat to threatened or endan-

gered animals, such as the marbled murrelet

(Brachyramphus marmoratus). In some parts of their

range, murrelet nest on thick bryophyte mats that

form on tree limbs. Epiphytes also harbor many

smaller animals. Bryophyte mats in the Sitka

spruce/western redcedar rainforests on Vancouver

Island, British Columbia, contain more than 150

species of microarthropods. At least 50 species were

new to science and were found neither on the

forest floor nor in nearby younger forest canopies

(Winchester and Ring 1999).

Production Dynamics of Floodplain
Trees

Collectively, the physiologies of individual species,

as well as the nutrients and OM from soil processes

and from the ocean and from canopy epiphytes,

contribute synergistically to tree production. Even

though older PCE floodplain forests are patchy,

they contain some of the fastest-growing and tallest

trees known (Van Pelt 2001). Unlike other tem-

perate or tropical alluvial forests, the long-lived

conifer forests of the PCE maintain high produc-

tivity into the second and even third centuries of

forest succession, accumulating impressive biomass

(Table 2). Nevertheless, floodplain trees exhibit

strong temporal and spatial variation in litterfall

and productivity rates.

In a typical example from the Queets River,

annual litterfall increases rapidly through the first
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100 years of successional development, a period

characterized by rapid hardwood colonization and

growth (O’Keefe and Naiman 2006). For very

young sites dominated by willow and alder

(<50 years old), annual litterfall averages only

about 3 Mg ha-1 y-1; however, peak litterfall

rates of around 10 Mg ha-1 y-1 are reached

quickly as sites approximately 50–70 years old

become dominated by mature alder. During the

first century of forest development, but not

thereafter, annual litterfall is significantly corre-

lated with canopy volume, stem volume, and total

basal area. After the first century, total litterfall

declines by about 40%. During this transition, the

forest undergoes a compositional shift from hard-

woods to conifers; this is reflected in conifer/

hardwood stem density ratios of less than 0.01 on

active channel surfaces but 1.7 and 2.7 on tran-

sitional terraces and mature terraces, respectively.

Concomitant with changes in patterns of forest

structure, litter production along the Queets River

declines to about 5 Mg ha-1 y-1 in the second and

third centuries commensurate with rates observed

in other regional riparian zones dominated by

conifers (about 7–9 Mg ha-1 y-1; Sedell and oth-

ers 1974; Neaves 1978) and in uplands (about

2–3 Mg ha-1 y-1; Edmonds and Murray 2002;

Gessel and Turner 1976).

Table 2. Structural Characteristics of Vegetation of Some Alluvial Forests from the Pacific Coastal Ecoregion

Location Age

(years)

Species Canopy

volume

(m3/ha)

Stems

(#/ha)

Basal

area

(m2/ha)

Stem

volume

(m3/ha)

Max.

height

(m)

ONP—Queets River1 130 Picea sitchensis 103,970 136 49.9 1065 56.8

Populus balsamifera

trichocarpa

50,549 50 34.7 615 51.8

Acer macrophyllum 30,344 36 8.3 142 38.7

Total 211,369 316 100.1 1907

�265 Picea sitchensis 77,427 267 70.1 1541 76.7

Tsuga heterophylla 14,381 33 5.6 93 51.7

Acer macrophyllum 36,585 69 17.1 318 39.7

Total 148,081 650 99.8 2069

�330 Picea sitchensis 116,637 177 59.5 1268 81.5

Tsuga heterophylla 48,729 174 20.5 329 59.2

Acer macrophyllum 26,152 17 10.8 200 38.6

Total 222,809 556 98.1 1899

WNF—Middle Santiam

River2
�450 Pseudotsuga menziesii 113,447 72 96.5 2198 81.3

Tsuga heterophylla 84,959 286 22.4 388 50.3

Total 200,331 359 119.8 2606

MRNP—Carbon River3 �500 Pseudotsuga menziesii 45,106 17 45.0 825 81.4

Tsuga heterophylla 102,774 254 36.0 778 75.5

Thuja plicata 22,583 23 27.2 386 69.7

Total 172,795 310 109.5 1989

MSHNVP—Muddy River*3 �650 Pseudotsuga menziesii 85,418 23 74.6 1575 90.3

Tsuga heterophylla 65,228 157 19.1 308 62.5

Thuja plicata 34,447 32 49.5 650 69.7

Total 189,089 226 144.1 2550

HRSP—Bull Creek4 1500+ Sequoia sempervirens 229,266 152 265.2 8071 111.6

Umbellularia californica 839 4 0.2 1 41.5

Total 230,105 157 265.4 8072

PCRSP—Prairie Creek5 2000+ Sequoia sempervirens 312,917 113 363.2 9456 101.0

Pseudotsuga menziesii 8,726 7 10.9 302 82.2

Total 338,881 164 379.1 9837

Only the stand dominant vegetation is listed; totals include all tree species present.
ONP Olympic National Park; WNF Willamette National Forest; MRNP Mount Rainier National Park; MSHNVM Mount Saint Helens National Volcanic Monument; HRSP
Humboldt Redwoods State Park; PCRSP Prairie Creek Redwoods State Park.
1Van Pelt and others (2006).
2Van Pelt and Franklin (1999).
3Van Pelt and Nadkarni (2004).
4Van Pelt and Franklin (2000).
5Sillett and Van Pelt (2007).
*Muddy River stand is on alluvium from a wet upper terrace, not a current floodplain.
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Floodplain plant density, biomass, and produc-

tion drive variation in litterfall rates over time. The

few studies of floodplain tree production suggest

that trees grow quickly with mature forests on

floodplain terraces being the main contributors to

production for at least 350 years after stand initia-

tion (Balian and Naiman 2005). On the Queets

River, tree density is highest on recently disturbed

portions of the active floodplain (�27,000 stems/

ha), declining exponentially to approximately 500

stems/ha in stands older than 250 years. Basal area

and total stem biomass are lowest in the active

floodplain (about 16 m2/ha and about 18 Mg dry

weight/ha, respectively), greater on terraces with

young forests (about 32 m2/ha and about 134 Mg

dry weight/ha) and greatest on terraces with ma-

ture forests (about 69 m2/ha and about 540 Mg dry

weight/ha). Surprisingly, at the plot scale, growth

rates measured as annual increases in total basal

area are not significantly different among differ-

ently aged physical surfaces—meaning that growth

rates appear to level off as indicated by basal area

alone—with mean values ranging from approxi-

mately 1.4 (low terrace) to approximately 2.8 m2/

ha/year (active floodplain). In contrast, annual

bole production is significantly higher on terraces

with mature forests (10.3 Mg/ha) than on the ac-

tive floodplain (3.2 Mg/ha); terraces with young

forests are intermediate (6.5 Mg/ha). The high

production rates on the terraces with mature for-

ests are attributed to a rapid increase in conifer

height on surfaces more than 250 years old.

These production rates are comparable to those

in regional upland forests and are much greater

than rates in many other parts of the world. At the

floodplain scale (57 km2 over 77 km of river length

for the Queets River), mature terraces contribute

around 80% of the total annual tree production

(28,764 Mg), whereas the active floodplain and

young terrace surfaces account only for 5 and 14%,

respectively. If findings from the Queets River can

be extrapolated to the region, this suggests that, in

combination with the rapid lateral migrations of

many alluvial PCE rivers, the older forests on ter-

races sustain OM inputs (especially LW). It is the

LW that, over decades to centuries, largely shapes

the character of rivers in the PCE and, as described

below, provides a positive feedback to support

further tree production.

Forest Productivity and Large Wood

Even after the large trees die, they continue to

influence forest productivity and stand structure in

ways complementary to nutrient delivery processes.

They do so as LW by encouraging the growth of

newly established trees early in stand development

(Stolnack and Naiman 2010). For example, Sitka

spruce distribution reflects—in part—the distribu-

tion of remnant logs. Sitka spruce establishes at

much higher densities on remnant logs than on soils

immediately adjacent to the log and, despite crow-

ded conditions, grows at similar rates to trees in

adjacent soils (Latterell and Naiman, unpublished

data). Spruce growing on remnant logs on Olympic

Peninsula rivers reach heights of 10 m in just

24 years; 14% taller than spruce of the same age in

managed riparian areas along small streams without

LW (Beach and Halpern 2001).

In addition to providing a more stable, sheltered

growth substrate than alluvial sediments, many

logs offer a moist, fragmented organic layer

immediately below the exterior, which is the result

of dampwood termite (Zootermopsis) activity. By

excavating tunnels and generating frass, termites

contribute to a fertile substrate for root growth and

potentially hasten the establishment and frequency

of spruce colonnades in recently disturbed flood-

plains (Latterell and Naiman, unpublished data).

Early establishment provides more time to grow

before the river reoccupies the location and cap-

tures the trees for the instream LW pool. LW ap-

pears much less important for conifer

establishment where Douglas-fir occurs on flood-

plains, such as in drier inland areas (Stolnack and

Naiman 2010).

In addition to direct effects, LW indirectly influ-

ences forest productivity by affecting the longevity

of individual forest stands (Montgomery and Abbe

2006), and thereby the reach-scale age structure of

the floodplain forest. LW-jams create erosion

resistant areas or ‘hard points’ (Montgomery and

Abbe 2006); as a result, trees growing on landforms

created by and/or protected from erosion by log-

jams are more likely to survive to maturity than if

the logjams were absent. Thus, logjams increase the

extent of mature forest patches within a river

reach. Older floodplain forests are more productive

than young stands—as previously described for the

Queets River (Balian and Naiman 2005)—with the

presence of LW presumably contributing to higher

overall forest productivity.

Floodplain Complexity and Production
Dynamics: A System-Scale Model

The ecological processes underpinning floodplain

tree production—ecophysiology, soil develop-

ment, large pieces of dead wood, salmon-borne

MDN, canopy epiphytes, herbivory, invasive spe-
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cies—exhibit extensive heterogeneity in space and

time (Table 3). Further, the biophysical complexity

is evident on several spatial and temporal scales

(Table 1). This complexity is a product of floodplain

history—shaped by variation in the pattern and

sequence of erosion and inundation, the underly-

ing physical template and the biotic (community)

drivers and processes. More importantly, the

environmental drivers are sequenced in time in

terms of their maximum effectiveness, having

synergistic effects over the entire 300–400 year

chronosequence (Figure 11). As coastal floodplains

mature they are largely influenced during the first

few decades by more terrestrial processes—such as

legacies of past disturbances and sediment texture

and abundance—and later on by more oceanic

drivers—such as marine-derived nutrients and

marine aerosols. Internally they are highly influ-

enced by herbivory, sediment trapping, and N-fix-

ation in the early decades and by LW and abundant

epiphytes in the 2nd and 3rd centuries. In combi-

nation, the sequence of environmental drivers

shapes floodplain characteristics and vegetative

productivity.

The high production rate of floodplain trees is

supported by a combination of sediment fluxes,

salmon-borne MDN, canopy epiphytes, alder, and

the ability to trap and hold nutrients from precip-

itation and fog. In essence, the dynamic floodplain

environment provides a diversity of sedimentary

substrates, as well as nutrient and moisture sources,

driving the productivity. Further, the existence of

large, old trees—adding the dimensions of diameter

and height—also is essential to overall system

diversity and productivity in a number of ways. The

trees harbor massive amounts of diverse epiphytes

after the first century, condense fog into usable

moisture, filter micro-nutrients from oceanic

sources, provide LW for in-stream habitat, stabilize

surface sediments, produce annually abundant lit-

ter, and share nutrients and moisture over wider

areas via root grafting or mycorrhizae. Further, the

large trees and the LW create habitat for additional

species.

The relative importance of each ecological com-

ponent underpinning floodplain characteristics and

tree production varies in three dimensions. It varies

laterally from the active channel to the edge of the

valley, longitudinally along the river from uplands

to the ocean, and latitudinally (N-S) throughout

the PCE in response to the biophysical character-

istics of specific floodplains and river valleys. Lo-

cally, spatial complexity in sediment texture,

moisture, and disturbance regimes are well appre-

ciated, and are manifest in the biotic communities

and processes (Naiman and others 2005a, b).

Additionally, there are strong latitudinal patterns in

lithology, climate, and elevation affecting the rel-

ative roles of epiphytes, invasives, MDN, litterfall,

and herbivory in shaping plant communities and

driving productivity. Although the complexity of

these drivers hinders development of a detailed

model that can be applied with confidence to local

situations, the general system-scale model (Fig-

ure 11) can be a guide to ecological understanding

and resource decisions considered in a local con-

text.

IMPLICATIONS AND APPLICATIONS FOR

FLOODPLAIN MANAGEMENT

The structures and processes associated with

channel geomorphology, soil development, large

wood, nutrient cycling, and plant succession are

closely aligned with those described for alluvial

floodplains in other temperate regions. For exam-

ple, the alluvial Tagliamento River (Italy)—possibly

the most natural remaining river in central

Europe—exhibits much of the biophysical com-

plexity and many nearly identical attributes related

to channel migration patterns, soil development,

woody accumulations, and plant succession (for

example, Ward and others 1999; Tockner and

others 2003). The Garonne River (France)—flow-

ing through a more human-modified landscape—

exhibits strong similarities in controls on nutrient

cycling, in some physical processes, and in vegeta-

tive succession (Décamps 1996). Further afield in

the savanna regions of South Africa, we have

found sediment texture, large wood, and herbivory

to be important in successional processes—but

operating at very different time scales than in the

PCE (for example, Bechtold and Naiman 2006;

Pettit and Naiman 2005). In contrast, controls on

floodplain nutrient cycling there respond to strong

environmental drivers shaping the upland vegeta-

tive patterns, such as fire and herbivory, to en-

hance nitrogen, phosphorus and sediment fluxes to

riparian zones (Pettit and Naiman 2007; Jacobs and

others 2007a, b). Overall, the fundamental struc-

tures and processes described for the PCE are sim-

ilar to many other rivers, but variation in climate,

successional pathways, and disturbance regimes

result in very different forest productivities and

dynamics (Naiman and others 2005b).

Floodplains throughout the world are undergo-

ing extensive modification, and those in the PCE

are no exception. Many PCE floodplains, especially

those south of central British Columbia, have been

modified by forest harvest, farming, log storage,
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water regulation, dredging, and residential and

industrial development (Naiman and Bilby 1998;

Burnett and others 2007). Urban development has

encroached into many major floodplains, facilitated

by the construction of flood control facilities dec-

ades ago. Further, they are experiencing changes

due to climate shifts expressed as decreased sum-

mer precipitation, increased winter flooding, loss of

spring snow mass and extent of glaciers, and rising

temperatures (Littell and others 2009). The legacy

of past land-use conversion and river modification,

as well as ongoing climate shifts, have profoundly

affected the way many river floodplains now

function. In the future, one can expect to see an

increase in the frequency and severity of large

floods and upland wildfires, both of which will

have effects on the biotic characteristics of the

rivers and their floodplains.

Fortunately, attempts are being made to imple-

ment science-based regulations conserving and

Figure 11. A summary of the major terrestrial and oceanic influences affecting floodplains in the PCE. The various

influences occur at specific time periods during floodplain succession, collectively driving the expression of system-scale

characteristics over the approximately 350 year chronosequence. Herbivory and the deposition of sediment-bound

nutrients are especially influential during the first several decades of floodplain development. Later, marine-derived

nutrients from spawning salmon and contained in precipitation and fog become increasingly important, especially as tall,

deep canopies develop in the maturing forests, and their epiphyte communities becomes fully functional into the 2nd

century. Eventually LW derived from productive forests returns to the river and shapes channel dynamics and patterns of

sediment texture and deposition.
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protecting floodplains (for example, King County,

Washington; http://www.kingcounty.gov/property/

permits/codes/CAO.aspx#best). Such regulations

represent significant progress toward maintaining

the process-based functions of floodplains and in

aligning policy with the best available science. Over

time, improved regulations should result in sub-

stantial gains in floodplain function. However, for

many rivers, much has already been lost; therefore,

the key challenges lie in designing process-based

approaches for system recovery that are effective

now and into the future (Beechie and others 2009).

Based on a contemporary understanding of natural

PCE floodplains, what strategies would be effective

in re-establishing self-sustaining systems within

existing constraints?

Process-Based Approaches to Floodplain
Recovery

Some restoration techniques rely on static designs

that are antithetical to natural functions (Beechie

and Bolton 1999). That is, many restoration actions

attempt to control natural dynamics and, as a re-

sult, eventually cease to function properly because

they cannot evolve to changing conditions.

Admittedly, many PCE floodplains are now urban

and industrial areas where the legacy of past

floodplain management policies severely constrains

restoration options. There, techniques such as

rehabilitation and substitution of structures for

processes are among the only feasible options (for

example, see Simenstad and others 2005; Simens-

tad 2006). Nevertheless, it is still common practice

to implement static restoration designs and struc-

tures even in relatively low-risk situations (for

example, public natural areas, sparsely inhabited

areas). In low-risk situations, process-based resto-

ration is a more effective and long-lived approach

to restoring floodplain ecosystems. In general, a

process-based approach focuses on understanding

how driving processes have been changed by hu-

man activities and how they can be re-

stored—thereby leading to a semi-natural recovery

of floodplain dynamics and riparian complexity

(Goodwin and others 1997; Beechie and others

2010; Kondolf and others 2006).

Five standards have been proposed for achieving

successful river restoration (Palmer and others

2005): (1) a design based on a specified guiding

image of a dynamic, healthy system; (2) an eco-

logical condition to be measurably improved; (3) a

self-sustaining system that is resilient to external

perturbations so that only minimal follow-up

maintenance is needed; (4) no lasting harm

inflicted during the construction phase; and (5)

both pre- and post-assessments completed and data

made publicly available. Two good examples of

restoration techniques consistent with these stan-

dards include establishing environmental flow re-

gimes that address the suite of flows required to

maintain processes supporting riverine ecosystems

(Whiting 2002; Richter and others 2006; Poff and

others 2009), and removing bank armor and levees

(or levee setbacks) to allow channel movements

and increase channel–floodplain interactions (Col-

lins and Montgomery 2002; Rohde and others

2004; Konrad and others 2008).

Successful restoration strategies initially assess

local habitat characteristics as well as historical and

contemporary driving processes (Beechie and oth-

ers 2008b). However, even with the increased

understanding that PCE floodplains and riparian

zones are highly dynamic systems, major uncer-

tainties and great research challenges remain (Nai-

man and others 2005a).These uncertainties and

challenges need not delay recovery actions. The first

steps are to identify those aspects known with var-

ious levels of certainty, paying particular attention

to uncertainties and assumptions (for example,

Marcot and others 2001; McCann and others 2006).

Key uncertainties require special attention because

important decisions require adequate and factual

information (Williams 2006; Venter and others

2008). In the PCE, and elsewhere, chief uncertain-

ties relate to determining what aspects of biophys-

ical complexity are most ecologically meaningful as

well as predicting how complexity and productivity

will respond to changes in system characteristics.

Major challenges relate to setting meaningful spa-

tial and temporal scales on biotic responses and

processes, and to focusing on multiple factors as

drivers of system vitality. Identifying meaningful

scales is important because intellectual paradigms or

management guidelines are often based on accept-

able minimums, which lead to system simplification

if operative scales are not clearly identified. Finally,

complexity and the responses of floodplain and

riparian systems arise from many factors, some of

which may dominate at particular scales of space

and time. Employing this perspective helps achieve

predictable understandings.

Despite the scientific advancements, the greatest

obstacles to effective floodplain restoration re-

main—the social, legal, and economic constraints.

Most medium and large-sized floodplains in the PCE

are privately owned, regulated by multiple jurisdic-

tions, in fragmented or discontinuous ownerships,

and often support important economic activities.

Landowners are understandably reluctant to
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undertake activities that reduce land values or deny

economic opportunities. Even where land is publi-

cally owned, managers must comply with flood

control obligations and respond to the concerns of

local stakeholders whose interests may conflict with

proposed restoration measures. Organizations such

as the Cascade Land Conservancy (http://www.

cascadeland.org) and Western Rivers Conservancy

(http://www.westernrivers.org), in collaboration

with various public agencies, have been highly

successful in buying land and negotiating conser-

vations easements throughout the PCE. Such efforts

may represent an important advance in protecting

floodplain and riparian habitats along large rivers.

However, land acquisition is expensive, often in-

volves complex negotiations and constitutes a new

and largely unregulated form of land tenure (Fairfax

and others 2005).

Appropriate Measures of Recovery

Process-based river restoration focuses on restoring

natural processes that shape floodplains; therefore,

monitoring protocols should also track those pro-

cesses. More specifically, assessing process-based

indicators related to floodplain forest productivity is

essential for restoration. Metrics may include

channel dynamics (for example, disturbance return

interval or comparisons with historical rates and

mechanisms; Montgomery and Abbe 2006;

O’Connor and others 2003), patch turnover rates

(Beechie and others 2006a; Latterell and others

2006), tree regeneration rates, LW recruitment,

and sediment accretion on floodplain surfaces (Pess

and others 2005; Latterell 2008). Some of these

metrics will require continued monitoring to obtain

reliable estimates while others can be readily ob-

tained from existing series of aerial photos. In

addition, channel–floodplain restoration actions

may be designed to meet both ecological and soci-

etal criteria for success, including species richness

of aquatic and floodplain dependent species and

the amount of land needed to maintain fluvial

processes (Larsen and others 2006). Where this is

the case, additional socio-economic monitoring

metrics allow for balancing ecological benefits

against the cost of allowing rivers to naturally

modify their floodplains and the river valley.

The need for such comprehensive monitoring

strategies poses unique scientific challenges. Mon-

itoring becomes prohibitively expensive when

comprehensive suites of monitoring metrics are

compiled (Beechie and others 2009). We suggest

that measures of process are generally better than

structural indicators. This is because they are more

likely to promote sustained recovery by discour-

aging static solutions where they are not dictated

by risk factors—thereby discouraging over-engi-

neering—and by encouraging remediation of driv-

ing processes rather than by treating symptoms. In

other words, where floodplain dynamics are con-

sidered to be reasonably intact and process rates are

measured as criteria for success, restoration using

process-based approaches is more effective. A key

issue is that time will be required to accumulate

enough information for some of these process-

based measures to be meaningful. For example,

channel movement is clearly a fundamental pro-

cess for many systems in the PCE but much of the

channel movement may occur during high-inten-

sity, low-frequency flood events. How many of

these events need to be included in the data set

before a defensible conclusion about system

behavior can be drawn?

A second challenge in monitoring floodplain

restoration is that the approaches must explicitly

account for time lags between restoration treat-

ments and responses (Beechie and others 2009). A

few very simple metrics of floodplain dynamics

should be sufficient to evaluate whether the

dynamics are recovering as expected, even though

changes may occur gradually over many decades.

Foremost, is the age structure of floodplain patches,

from which patch turnover rates can be calculated

(Beechie and others 2006a). Age structure of

floodplain forests has been used to track gradual

reduction in river dynamics and increasing flood-

plain stability after installation of dams, and the

same procedures can be used to monitor recovery

of river-floodplain dynamics (Kloehn and others

2008). A few good early indicators of restoration

success—in cases where floodplain connectivity

and channel migration is improved—are newly

formed depositional features, newly established

pioneering vegetation (both deciduous and conif-

erous), and the new accumulations of LW or the

growth and retention rate of existing trees. Evalu-

ations such as these integrate both remotely ac-

quired and field data to evaluate project

effectiveness (Konrad and others 2008).

CONCLUSIONS

Although the biophysical complexity underpinning

the ecological patterns of PCE floodplains is sub-

stantial, ongoing research and monitoring continu-

ally strengthens our understanding of processes

contributing to observed patterns in vegetation as

well as those that will speed floodplain recovery.

Collectively, the dynamic processes contributing to
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floodplain integrity present enormous challenges for

effective management and restoration in the PCE.

Fortunately, our current understanding of these

systems, in association with appropriate metrics for

evaluating floodplain condition and functions, pro-

vides process-based approaches to management and

restoration, thereby sustaining long-term system-

scale integrity. This ongoing exercise requires the

insights and skills of diverse disciplines, as well as the

on-going support of the public and their decision-

makers. We submit that these ecological systems are

so environmentally and socially important to the

PCE that the efforts, although expensive and time

consuming, are justified.
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