PARMEN BRIGHT FONTS 5/22/2019 S now **Hydrologic Response to Outline Timber Harvest and Forest** Introduction to the Hydrologic cycle Management Practices in Methods/Locations Effects of Forestry Treatments VIMBLE **Western Oregon** Streamflow/peak discharge response Soil moisture response Palmer Baldwin Stream Temperature response Western Oregon University Summary Monmouth, Oregon Email: pbaldwin16@wou.edu A00 " Mysouchan note SLIDE No upporch MOVE TITLES DONN OFF Pary (2000) 1. Swast Water Storage INTRODUCTION Locations he Water Cycle Forest Canopy Snowpack Soil and Regolith Movement **Mechanisms** Precipitation Evaporation Transpiration Snowmelt stream channels Throughfall Boig Scar Donn VIE mansitus Subét¹

the CAS Nonvoining Thorough Constitutions of Constitution 5/22/2019 Eury Parister Responses Methods Evapotranspiration effect: LTER forest basins with stream Reduces canopy storage Increases throughfall to soil gages, dataloggers Reduces evapotranspiration Control: untreated forest basins Decreases cloud water interception Cloud water interception effect: partial or complete canopy Decreases cloud water interception (seasonal) removal Snowpack Dynamics Effect: roads = canopy removal, Decreased canopy evaporation hydrologic reroute Rain-on snow-events= increased soil moisture and runoff Subsurface Flow interception effect • Road construction= canopy gaps MARCH HOW SIXE Alters water routing to streams sout pri container & APP VIS" Areas of study Streamflow & Peak Discharge • 14 experimental basins, 3 LTERs (HJA, Fox Creek, Coyote Creek) comparing average magnitude of peak discharge events • Size of event= 0.22-0.28 (4-5 largest peak discharge events/year) • 100%, 50%, and 25% forest canopy removal groups BUSCUSS MESUIT I PENK ROW NES PONSE"

- Large increases in peak discharge after forest canopy removal
 Decreasing
- Decreasing
 effect over time
 Proportional to
- Proportional to canopy removal percentages
- Consistent in all 3 locations

Ac CANDUNDONIENT

DIS CUSS

Soil moisture response

- Varies seasonally
- Plant cover decreases moisture content
- Wilting-point: no coming back
- Clearcut, broadcast burned forest examined

- Soil moisture initially increases after treatment
- Decreases after reclamation
- Persistent deficit for remainder of study

DISCUSSINIS

- Revegetation rapidly decreases soil moisture
- Persistent moisture decrease= decreased forest regeneration
- Burning reduces wettability, infiltration

Stream Temperature

- Stream temperatures legally mandated
- Temperature affects ecosystem service providers
- Currently measured on a scale thats ignores local heterogeneity

EACH MAN HOWARD ALVANOR

Sile Sparis Contents

Majoris Contents

Majoris

Suspended Sediment oncentrations

Cutblocks accumulated more snow Increased snow=

increased peak flow

Increased mean daily discharge

APJUST CLET

ACNUSS/Raimon

7 Fort

NO UNDOR USE CONSUPERT

Suspended Solids

- Riparian treatments:
 increase TSS, discharge
 in freshet events
 - increase daily peak discharge
 - -increase snowpack accumulation
 - -protect streambanks BUT alter balance

 Increase in peak snowmelt and total freshet discharge persisting

> BLACK GUT. / ALL TENO BACKONINO

Increase in TSS- effects degrade over 3 years

Concresions Concresions

SUMMARY

- Increased canopy removal=increased runoff
- Increased roads=increased runoff
- Roads reroute surface and subsurface water flow
- Riparian treatments:
 - increase TSS, discharge in freshet

events

increase daily peak discharge

increase snowpack accumulation

-protect streambanks BUT alter balance

No ansound

WHAT'S WHAT'S BE CHUKEL OF JANGON

INCREASE /Brin PACKNONCODENTERS' SCIDE

5

TIM

PRACTICE J TIMES

5/22/2019

TACK LONDEN

FACE AND IENLE / Ari

CAP

Sediment Dynamics and Erosion Response to Forest Management Practice in Western Oregon

Timothy B. Hagen
Earth and Physical Science Department
Western Oregon University
Monmouth, Oregon
Email: thagen15@mail.wou.edu

Apo-2-3 partyMone Discuss on A

> Consent DEPTH

Outline

- Introduction
- Timber Harvest and Forest Management
 - Locations: Western Cascades, Coast Range, PNW
 - Methods: Treated Vs. Untreated (Control)
- Effects / Response on Erosion Rates and Sediment Transport in Streams
 - Erosion Rates
- Summary / Conclusion

INTRODUCTION

INCHONES INCHONES

Introduction

Sediment In the PNW

Man made **Natural Problems from** sediment Fish

Water quality Many experiments

with data Sources type

Like British (Aps

Timber Harvest and Forest Management **Practices**

Locations PNW Western Cascades Controlled water sheds H. Andrews Alsea

LUSE BUILTS SADJUST
CONSIDERRY

HOD SLIDE

-WATCH SPACING

Methods

Sediment monitoring equipment: Weirs **Flumes** Controlled experiments Logging methods Clear cut Patch cut

Clear cut from Watershed / H.J Andrews

Constitutions Constitutions

Effects / Response on **Erosion Rates and Sediment Transport in** Streams

Erosion Rates

Rates depend on method / location Weather

storms

Rates are highest after logging

General trend Other reasons Fire

Thorn for Library The

ALL BENCH BORDER

MECHRIS BULL Are CAYS **Forest fires** Rates highest after logging with weather 3. Monthly total SSL (C) and flow (m3 III) for Lower Tanliwyth. Chart from Plyntmon United Kingdom experiment - Fires leave the ground exposed to weather and erosion ADD DON SLIDES

MINT DATA

WINT FRANCES BURELL BACKCHOWN D Man made sources **SUMMARY** & Conclusion The way we manage our forests greatly impacts sediment rates Consumoria (Mec emps Consumoria (SEnsis Maporia Ta

Conclusion

Sediment erosion in the PNW is a problem for fish and water quality

The methods we used change rates of sediment run off

Sediment erosion is always highest after logging with wet months

The PNW is a prime location for sediment erosion

Thank You

ADDOST / WE CONSISTENT

practice 5 prints ANSIN 5/22/2019 VIENER CHIBRE Outline **Forest Road Construction and Sediment Production in** Introduction Areas of Study **Western Oregon** Treatment Methods Austin Wegner Earth Science Department Results and Data Monmouth, Oregon Conclusion/ Email: awegner16@mail.wou.edu OBSCUTE ON APPLICATION CAUBA! Dry Monuciar 4 Introduction Study Areas Logging and Western Cascades of logging roads have Lookout Creek, Blue River Basin · Roads are necessary HJ Andrews for efficient Experimental Forest harvesting and Alsea Watershed Mitigation of damage is the goal

LARSER INCHERSES

SIGN ATON)
LOCATON)
1

Mentonor

Boio fix for

Treatment Methods

- Road Grading
 - o Helps to level the
 - Ensures proper drainage
- Ditch Blading
 - Allows for more consistent sediment flow

Treatment Methods

- Vegetation removal
 - Decreases stability
 - Increases sediment
- Aggregate Distribution

"Experimental"
REJUIT"

Common Side Effects

- Debris Flow
 - Oversteepened
- Plugged culverts Creates gullies
- Hillslope Slide
 - Oversaturation and slope failure
- Increased turbidity

Alsea Watershed Study

- - Needle Branch

 - Watershed (75 ha) Deer Creek (304 ha)
 - Flynn Creek (202 ha)-

Experimental Control

Treatments

- Needle Branch

Born

5/22/2019

a ASEA Snog

ADD SLIDE

FINCHEMPE TABLE Site

Alsea Watershed Study

- Focuses on longterm effects of sediment increase
- Some effects are
- Changes in the seen years after

Alsea Watershed Study

- Suspended sediment correlation with discharge
- Annual vs monthly sediment yields of study

Drawats E

TWOILINE USE "MARKE" I WE

Bor 0

Consummi Funts

Suspended Sediment by Year (Alsea)

Needle Branch (82% clear

1 fix win

Trask Watershed Study

- 5 Road crossings studied
- · Sensors are placed above and below harvest site
- · Measurements of turbidity, SSC, and discharge are taken
- · Data is collected at 3 separate times in the forestry process
- · Data is then analyzed and compared to determine statistical relationships

METOD KASE, MAN 3

5/22/2019 De will be know the west Trask Watershed Study Trask Watershed Study Correlation 84.64 between turbidity and suspended STATE OF STATE OF L ph. given a specific discharge Turbidity (NTU) Dispostor PACK GLOWIND MONE AT OF SWOXH TITLE Effects of Traffic and Road Trask Watershed Study Maintenance on Sediment **Production** 140,60 No love 19/19 We he Dufce??

VARIABLES"

- 12 road segments split into 4 categories
 - No traffic, No ditch grading (NTNG)
 - Traffic and no ditch grading (TNG)
 - No traffic, Grading (NTG)

, , , ,

- Traffic and Grading (TG)
- As similar environments as possible
- Trucks make 10 round trips per day from Nov. 15 to Dec. 14
- Sediment collected and measured in runoff tanks

Results

Conclusion Ann

ACKNIN LEDGEMENT SLIDE

5

HUNDER PRAETICE TIMES 5/22/ ESS OVERVIEW DATA/ DETAIL) - RMUSH SEYERUM TOW T

Landslide and Debris Flow Occurrence in Forested **Landscapes of Western** Oregon

Hunter Collins Earth and Physical Science Department Western Oregon University Monmouth, Oregon Email: HCollins14@wou.edu

Outline

- Introduction
- Timber Harvest/Forest Management Practices
 - Methods
 - Locations
- Styles of Mass Wasting/Controlling Factors
 - · Slump, flow, slide
- Effects of Forest Management on Mass Wasting
 - Deep Seated Landslides
 - Shallow Landslides/Debris Flow
- Surnmary/Conclusion

ISE CONTISTENT

INTRODUCTION

Why is this important?

- Forests cover almost half ORs total land mass
- Forest harvest practices wreak havoc on multiple environments
 - Riparian (river)
 - Forest Landscape
 - Fish Habitats
- Removal of trees causes reduced soil stability and more mass wasting events

SHOW 3-4 SLUES
SHOW STAT DAM (MARRITE
FROM YOM, NORDINGS

Mi Chos **Timber Harvest/Forest Management Practices**

Methods

- Treated (harvested) vs untreated forest areas
- Different "age classes" of trees
- Christine May study (2002) observes frequency of debris flows based on tree fage"

Sharsh Browners

NEE CONSTRUCTION BONDS

Landslide

- More broad category name
- Involves processes less associated with water
- Can be a part of complex terrains
 - Contributes to other mass wasting events

her histo?

y elli

Controlling Factors

- Three main contributing factors to mass wasting events
 - Vegetation: soil stability
 - Water Saturation
 - Underlying Geology/Sediment loads

Effects of Forest
Management on Mass
Wasting

New Sone pmA/nduits

M AND 03 5/21/19

Brisiti dellar

AL CAPES

5/22/2019

Perspectives on Climate Change and Forest Hydrology in the Oregon Cascades

> Samantha Abel Earth and Physical Science Department Western Oregon University Email: sabel14@wou.edu

Outline

- Introduction
- Climate & Climate Change Models
 - Historic / Present Models
 - Predicted Future Models
- Implications on Forest Management
- Conclusion

CHOL DAS "CLIMATE MUDERJ"

fox Brust

Introduction

- Willamette Basin
- Climate change
- Less snow/pack **Earlier melt** *≻***Drier summers**
- **Oregon Cascades**
 - Western Cascades
 - Surface flows
 - High Cascades Spring-fed

CLIMATE & CLIMATE CHANGE MODELS

Historic / Present Models

"CLMARITE"
NUMBER

Point To Ducherskip

NE CONCALM CONT

2

pp mark Concersion" App The Concersion of the co

Vulnerability of human-natural system Response capacity Sensitivity Human conditions: types of actors and institutions, management characteristics system existing programs policies, & institutions Adjustment & adaptation Environmental conditions: geology, elevation, drainage characteristics, snow Natural system: existing and altered accumulation & melt patterns, climate watershed attributes Model used to assess a sector's vulnerability to climate change and streamflow alteration; (K.A. Farley et al., 2011)

Conclusion

- Climate change
 - Drier summers, wet winters
 - Early melt, r-o-s
- Snowpack retreating
- Rain-snow transition line already shifting up elevation
- Leaf cover expected to decrease
 - Fire
 - Timber harvest
- Overall evapotranspiration decrease
- Some sectors prepared, some not

ACKNOWLEDGENENTS