ES322 Geomorphology Mid-Term Study Guide Fall 2012

Exam Format

Two-Part Exam, Thursday November 1, 2012:

Part 1 - Closed Book, short answer essay – terms and definitions, draw sketches, long answer essay – "compare and contrast", "discuss", "explain".

Part 2, Open Book, lab-style problem solving, you will be able to use all of your class resources to solve math-based, lab-style problems.

Study Tips

- go through the web site, look at the figures and slide shows, compare to notes
- use study guide in combination with notes
- go back through the in class / lab exercises, make sure you can work the math / units
- spend a couple days studying, the exam will be essay and there is much material.
- don't wait until the last minute!
- carefully go through the notes, some of the material we briefly discussed, but did not spend much time on in class... but the notes will give you the detail
- -finish all your lab exercises before taking the exam!!! Lab questions will appear.
- -Exam format: Part 1. Closed book short answer / essay. Part 2. Open-book lab-style problem solving.

Midterm Portfolio Due Thursday November 1, 2012

Key Words	climate controls	clay size
	insolation	clay minerals
Introduction	precipitation	joints
	temperature	faults
Intro to Landscape Analysis	gravity controls	permeability
Landforms	tectonic controls	physical weathering
Materials	resisting framework	frost wedging
Process	lithology	unloading
Age	rock structure	sheeting
Active Channel	resistant vs. non-resistant	exfoliation
Floodplain	lithologies	thermal expansion
Valley Bottom	geomorphic thresholds	organic activity
Hillslope	extrinsic vs. intrinsic	root wedging
Sediment Transport	critical angle	salt wedging
Bedload	Constructional landforms	
Suspended load	destructional landforms	water molecule
Dissolved load	exogenic processes	volume expansion
Flotsam	endogenic processes	hydrolysis
Force	isostacy	clay expansion
Mass	isostatic rebound	thermal expansion
Velocity	crustal uplift / isostacy	chemical weathering
Acceleration	rates of crustal uplift	pН
Energy	rates of crustal denudation	chelation
Geothermal	Quaternary (when is this time?)	hydration
Solar	Pleistocene (ages? When is this)	oxidation
gravity	Holocene (ages? When is this)	ion exchange
Time		solution
Temporal vs. Spatial Scaling	Weathering and Soils	parent material
landscape construction		aspect
tectonics	mass transfer	soil
landscape destruction	weathering	horizonation
weathering	sediment / grain size	eluviation
erosion	"sediment" vs. rock	illuviation
denudation	erosion	soil color / color index
driving mechanisms	denudation	soil profiles (A, B, C)
climate / solar energy	bedrock	soil percolation
tectonics / internal	regolith	soil translocation
gravity	residuum	weathering rinds
process rates	colluvium	relative dating
Earth Systems	alluvium	iron accumulation
process-response models	diamicton	phyllosilicates / clays
Systems	eolian	hydrous alumino silicates
mass and energy flux	glacial	bowen's reaction series
equilibrium concept	till	temp-pressure reactions
driving force vs. resisting	drift	
framework	lacustrine	soil forming factors:
force	deltal	Cl,O,R,P,T
energy kinatic anaray	pedogenesis – soil development	climate, parent, organic
kinetic energy	O,A,B,C, R	time, slope/relief/aspect
potential energy	porosity	
work	clay	

Age of material vs. age of Mass Wasting / Hillslope **High Cascades** Process surface Juan de Fuca Plate N. Am. Plate coastal wave-cut terrace Subduction potential energy soil correlation kinetic energy law of superposition Accretion force law of geomorphic position **Tertiary** stress Quaternary Eocene ioules Topographic map Principles Oligocene newtons shear force topographic maps **Spencer Formation** normal force north arrow **Tyee Formation** magnetic declination Yamhill Formation shear stress map scale Oligocene Gabbro normal stress fractional scale Marine sedimentary rks shear strength slope stability graphical scale Volcanic rocks internal friction longitude latitude Siletz River Volcanics pore pressure township-range-section Rain shadow effects cohesion equator Climate-Tectonics safety factor prime meridian Coast Range Uplift coulomb equation parallels Willamette Valley mass wasting angular measurement Missoula Floods angle of repose 7.5 min quadrangle Willamette Silts slope angle contour interval hillslope index contour Applied Geomorphology rock law of V's / streams Engineering Geology debris earth Geomorphic Mapping Criteria Geotechnical (**see new notes on web site) Seismic safety fall Landform-Material Soil boring topple slide Process -Age Solid Stem Auger hollow Split Spoon Sampler slump side slope near-surface materials flow slope gradient channel saturated soil depth angle: degrees vs. percent Perched Groundwater floodplain head scar Standard penetration test dune Cascadia Subduction Zone creep terrace solifluction levee Crustal faulting avalanche sediment texture Fault zones landslide classification Soil boring diamicton lacustrine Total Depth Liquefaction Geomorphic and Landscape eolian Age Dating colluvial-alluvial Soil moisture content glacial Soil plasticity Soil gradation Quaternary (when / how long Native Alluvium ago?) Campus Construction Site / Pleistocene Field Trip Terms Willamette Silt W. Oregon Regional Geology **USCS Soil Classification** Holocene Coast Range USCS Soil Class "CH" Relative age dating Absolute or numerical age Willamette USCS Soil Class "CL" dating Cascades USCS Soil Class "ML" Early-middle-late Pleistocene Western Cascades

HWY20 PME Project Terms:

Tyee Formation

Turbidites

Marine sandstone

Proximal vs. distal sediment

Delta / shallow water deposition

Ramp / deep water deposition

Sandstone-siltstone-shale ratio

Thick vs. thin bedded sandstone

North flow paleocurrents

Deep-seated rock-block slides

Shallow landslides

Debris flow

Creep

Earth flow

Paleolandslides

Late Pleistocene climate change

Co-seismic landslides

Strike / dip

Root strength

Cohesion

Dip slope

Failure plane

Bedding plane

Shear zones

Fault-fracture-joint

Intrusive dike

Colluvium/alluvium

Oxidized shear zone

Hummocky topography

Lobate morphology

Lidar

Permeability/porosity

Pore pressure

Positive pore pressure

Negative pore pressure

Piezometer

Manometer

Pressure transducer

Water levels

Hydraulic pressure

Normal force/strength

Shear force / strength

Coulombs law

Factor of Safety

Compressive strength

Tensile strength

SPT split spoon /

Standard penetration test

Blow counts

Rock/soil mechanics

Rock drain

Hollow stem auger

Rock coring

Cut / fill

Bridge columns / bents

Erosion/sedimentation control

Quantitative Skills

Process Rate Calculations

Basic map reading / landform identification from a topographic map.

Given a rate of weathering and "soil erosion", calculate the equivlalent rate of crustal denudation and rock erosion

From a topographic map, caculate hillslope gradient (in degrees, in percent, in ratio form)

Draw a topographic profile from a topographic map.

Plot soil texture data on a triangular diagram, determine soil classification, calcuate soil texture parameters

calculate potential energy, kinetic energy, force, weight, stress

resolve weight, shear and normal stress from a basic slope problem

be able to work the Coulomb equation, and

determine slope stability; calculate gradient and slope angle in degrees and percent

air photo scale calculations, other air photo calculations as in lab

identification of basic landforms and geomorphic process by examining aerial imagery

calculating the slope of stream channel or hillslope from a topographic map (in degrees and percent)

Key Concepts

Give examples of resistant vs. non-resistant lithologies, and how they respond to erosion and landscape

List and discuss the driving mechanisms for geologic / geomorphic processes.

Give example rates of crustal uplift and crustal erosion

What are the necessary elements for the collection and analysis of air photos.

What is the significance of "clay" at the Earth's surface

What factors effect rates of weathering? What are the physical and chemical weathering processes?

What is the difference between soil and sediment? How are soils formed? How are they identified?

What are the soil forming factors, and how are they used as a dating tool in geomorphology?

What are the range of processes, landforms, and surficial materials found at the Earth's surface? in western

Oregon? Can you make some general sketches showing these geomorphic elements?

How does the landscape evolve over time? How does this relate to systems theory? Thresholds theory?

What are the typical ranges of rates and processes of erosion and deposition found at the Earth's surface?

List and discuss the mass wasting classification system?

What factors effect slope stability?

Discuss the controls of bedrock lithology on landslide style and susceptibility in the Oregon Coast Range What are the primary controls on slope stability

Discuss the regional stratigraphy and bedrock geology of the central Oregon Coast Range