ES322 In-Class Exercise

Part 1. Estimating Lithostatic Pressure inside the Earth

Let's consider an area of the Earth's surface 1 km x 1 km square, and project it as a rectangular prism of rock to a depth of 5 km inside the crust. Assume a uniform average rock density of 2.9 g/cm3, from top to bottom in the rectangular slice of rock. Draw a block diagram to illustrate the above relationships. Using your conversion tables and rock property equation lists, calculate the following values (SHOW ALL OF YOUR MATH WORK AND UNIT ALGEBRA):

Total of mass of rock in the pris	m in kg		
Total mass of rock in the prism	in metric tons	(t)	
The total weight of rock in New	tons (N)		
Total pressure equivalent at ba	se of prism in	Pascals (Pa)	
Total pressure equivalent at ba	se of prisim in	MPa	
Hints / Equations and conversion	ons:		
$Vol = A \times d$	D = M/V	Wt = Mg	$g = 9.8 \text{ m/sec}^2 \text{ P} = F/A$
1 Pa = 1 N/m^2	1 N =	1 kg-m/sec ²	$1 \text{ MPa} = 1 \times 10^6 \text{ Pa}$

Part 2. Understanding Erosion Rates and the Power of Big Geologic Time

Assuming that the mass of rock at the very bottom of the rectangular prism in Part 1 above, is subject to long-term uplift and erosion, with long term average erosion rates on the order of 100 mm/ka. How many years would it take to exhume and expose the basement rocks at the foot of the rectangular prism in Part 1 above? SHOW ALL OF YOUR UNIT ALGEBRA.