Drainage Basins Overview of Surface Hydrology

Section 1. The Drainage Basin

- I. Introduction
 - A. Terminology
 - drainage basin or watershed: network of surface water collection tributaires
 a. delivery of sediment and water from system
 - 2. divide or interfluve upland areas that separate drainage basins
 - 3. Trunk channels vs. tributaries
 - a. Sediment removal mechanism
 - b. landscape degradation
 - B. System
 - 1. External Inputs
 - a. Geology
 - b. Tectonics
 - c. Climate
 - d. Landuse
 - 2. Internal System
 - a. Basin collection
 - b. Channel transport
 - c. Delta deposition
 - d. Fluvial Mechanics
 - (1) sediment supply vs. water discharge
 - (2) mechanical adjustments as needed
 - (a) aggradation
 - (b) degradation
- II. Slope Hydrology and Runoff Generation
 - A. Water Budget
 - 1. Precipitation: source of drainage
 - a. primary flux of water in any drainage system
 - b. water transport pathways
 - 2. Interception: vegetal interception
 - a. catchment of rainfall by leaves, trunks and other vegetal matter
 - b. < erosive force of raindrop
 - c. 10-20% interception in grass area, up to 50% in forest canopy
 - 3. Evapotranspiration: rain that does not reach ground, vegetal consumption, leaf evaporation
 - 4. Infiltration vs. Runoff
 - a. storm of surface runoff: direct surface flow following precipitation event
 - b. Infiltration: soil percolation, vadose zone hydrology

- (1) Infiltration Capacity: rate of percolation based on soil conditions (in mm/hr)
 - (a) f(soil thickness, texture, structure, vegetation, pre-existing soil moisture)
 - (b) control:
 - i) absorption to soil
 - ii) storage of water in pore spaces
 - iii) downward conveyence through soil
- (2) Infiltration vs. Runoff controlled by geology
 - (a) lithology and related soils controlled by inherent permeability of earth materials
- (3) Infiltration with time
 - (a) high rate, exponentially decays with time as available pore spaces fill
- c. Hortonian Overland Flow
 - (1) precipitation > infiltration capacity = runoff down slope surface
 - (2) instantaneous supply to channels as sheet flow
 - (3) where precipitation < infiltration capacity = water infiltrates, transport to water table, then to channels
 - (a) result: delay in peak flow of streams from ppt to discharge, because of groundwater lag.
 - (4) Overland flow
 - (a) sheetflow
 - (b) rill- flow
- 5. Subsurface Stormflow and Saturated Overland Flow
 - a. Vadose zone transport
 - (1) lateral = through-flow or interflow
 - (2) vertical percolation
 - (a) =f(anisotropy, permeability)
 - (3) Variations on Theme
 - (a) Macropore piping
 - i) preferred flow along root channels or borrows
 - ii) textural variables
 - (4) Saturated Overland Flow
 - (a) all vadose zone fully saturated
 - (b) direct surface runoff only possible

- B. Stream Hydrograph and Basin Character
 - 1. Basic Question: how much runoff? how quickly discharged to channels? Probability and prediction of flood?
 - 2. Flood Hydrographs
 - a. data collection of stream discharge vs. time
 - (1) direct runoff (surface response)
 - (2) baseflow (groundwater discharge to stream system over time)
 - (a) sole source feeding stream flow during dry seasons
 - b. Data Character
 - (1) precipitation---- rising limb of graph --- peak flow --- recessional limb of graph
 - (a) lag time common: between peak storm discharge and peak flow to stream
 - i) owing to transport (surface and subsurface)
 - ii) "basin lag"- time diff. between centroid of rainfall event and centroid of max. Q at measuring points
 - iii) > lag time with > basin size
 - a) f(floodplain storage potential)
- C. Effect of Physical Basin Characteristics
 - 1. Controls on Hydrograph
 - a. temporal and spatial distribution of rainfall/precipitation
 - b. basin characteristics
 - (1) area, channel density, geometry, soils, vegetation, land use
 - c. "unit hydrograph" = type hydrograph for a given basin
- III. Initiation of Channels and Drainage Networks
 - A. Basic Principles
 - 1. Hortonian Principle
 - a. rainfall intensity > infiltration capacity = overland flow = erosion
 - (1) shear force of flowing water on slope material
 - (a) as Force > Resistance = erosion
 - i) Threshold process F>R
 - (2) Resisting Factors
 - (a) soil cohesion
 - (b) vegetative cover (type and density)
 - (c) pre-existing moisture
 - b. Tractive or Shear Force

$$\tau_{\rm o} = (\gamma_{\rm f}) \mathsf{D}(\theta_{\rm c})$$

where τ_o = shear or tractive force on sediment, γ_i = specific weight of fluid, D is flow depth, θ_c = gradient

- c. Hillslope Erosion Processes
 - (1) Erosive process: rills to gullies to channels
 - (a) Horton's critical length = distance from drainage divide to point downslope where erosion/rilling will begin
 - (b) f(rainfall intensity, slope, veg. cover)
 - (2) Rill Process
 - (a) micropiracy and "cross-grading"
 - i) rills pirate into primary rill channel
 - ii) rills necessary forerunner of stream channels
 - (3) Channel Bifurcation
 - (a) division of single channels into two
 - i) headward erosion
 - (4) Groundwater Sapping
 - (a) gw seepage zones, with flow convergence on hillslopes
 - (b) hillslope erosion at point of emergence, spring discharge
- B. Basin Morphometry
 - 1. General
 - a. Basin Morphometry: geometric characterization of drainage basin
 - (1) predict flood peaks, sediment yield, estimate erosion rates
 - b. Strahler (1952) Stream Ordering Technique
 - (1) 1 =smallest trib. with no other tribs.
 - (2) 1+1=2, 2+2=3, 3+3=4,etc.
 - c. Quantification and Characterization
 - (1) Linear scale (with units) measurements
 - (2) Dimensionless Ratios
 - 2. Types of Relations
 - a. Linear
 - (1) relates basin character to stream order
 - (2) Examples
 - (a) Bifurcation ratio: ratio of no. of streams of given order to next highest order
 - i) rapid estimate of frequency of orders
 - ii) Rb avg. 3 5
 - (b) Length Ratio: ratio of avg. length of streams of a given oder to those of next highest order.
 - b. Areal
 - (1) Ao = area of any basin of given order (basic unit)
 - (2) Drainage density D = avg. length of streams per unit area
 - (a) f(geolog yand climate)

- c. Relief: characterizes vertical dimension of basin
 - (1) includes factors of gradient and elevation
 - (2) examples
 - (a) max. basin relief: high el. on divide lowest el. at mouth of trunk stream
 - (b) relief ratio: max. basin relief/dist. parallel to trunk basin drainage
 - (c) Hypsometric analysis: relates elevation and basin area
- 3. Summary Common Morphometric Relationships

(common abbreviations in formulas: s = order of master stream, o = given stream order, H = basin Relief, P = Basin parameter)

a.	Linear Morphometry			
Stream Nos. in Order	N _o =R _b ^{s-o}			
Total Stream Nos. in Basin N = $\frac{R_{b}^{s}-1}{R_{b}}$ R _b -1				
Avg. Stream Length (Avg L_0)=(Avg L_1) R_L^{0-1}				
Total Stream Length:	$L_0 = (Avg L_1)R_b^{s-1}((u^s-1)/(u-1))$ where $u = RL/RB$			
Bifurcation Ratio	$R_{\mathrm{b}} = N_{\mathrm{o}}/N_{\mathrm{o+1}}$			
Lenght Ratio	$R_{L} = (Avg L_{o})/(AvgL_{o+1})$			
Length of Overland Flow	l _o = 1/(2D)			
b.	Areal Morphometry			
Stream Areas in Each Order				

Stream Areas in Each Order:

Avg $A_o = (Avg A_1)R_a^{o-1}$

Length Area	$L = 1.4A^{0.6}$	
Basin Shape	$R_f = A_o/L_b^2$	
Drainage Density	D = (Sum L)/A	
Stream Frequency	$F_s = N/A$	
Constant of Channel MaintenanceC =1/D		

	c.	Relief Morphometry	
Relief Ratio		$R_{h} = H/L_{o}$	
Relative relief		$R_{hp} = H/P$	
Relative Basin Height		y = h/H	
Relative Basin Area $x = a/A$			
Ruggedness No.		R = DH	

- C. Basin Morphometry and Flood Hydrograph
 - 1. Hazards mitigation: led to prediction of flood occurrence by use of morphometric relationships
 - a. flood hydrograph ideally will be characterized by basin morphometry as it catches precip.
 - b. controls
 - (1) drainage density and peak flood
 - (2) floodplain storage capacity
- IV. Basin Hydrology
 - A. Hydrologic Budget
 - 1. water input output = Storage
 - a. inputs = rain and snow
 - b. outputs =
 - (1) streamflow
 - (2) evapotanspiration
 - (3) infiltration
 - B. Subsurface Water
 - 1. Hydrogeology groundwater geology
 - 2. Groundwater Profile
 - a. vadose/soil moisture
 - b. capillary fringe
 - c. water table
 - d. phreatic zone
 - 3. Movement of Groundwater
 - a. gravity
 - b. head potential
 - c. hydraulic conductivity
 - d. hydraulic gradient
 - e. Darcy's Law: V = K (h1-h2)/L; Q = KIA
 - 4. Aquifers, wells, etc.
 - a. unconfined,
 - b. confined
 - c. water table vs. potentiometric surface
 - d. artesian flow
 - e. cone of depression
 - C. Surface Water
 - 1. Basic Principles
 - a. Discharge: Q =wdv = Av
 - (1) velocity is difficult to measure across channel be cause it is variable
 - b. Gaging Stations
 - (1) discharge measurements along streams/rivers
 - (a) mean daily discharge
 - (b) mean annual discharge

- (2) River stage = height above ref. point
 - (a) rating curve: relates stage to Q for ease of extrapolation
- 2. Flood Frequency
 - a. What is the frequency and magnitude of floods in a given system?
 - b. flood duration curve
 - (1) semi-log plot of discharge (y-log) vs. percent of time flow equaled or exceeded discharge (x-arith)
 - (2) used in flood mitigation/planning
 - c. flood recurrence interval
 - (1) Weibull method: R = (n+1)/m where R = recurrence in years, n = no. of years in annual series, m = magnitude rank of a given flood.
 - (2) plotted on prob. paper to give estimate of mag. of flood that can be expected in a given time period.
 - (3) Probability of a given flood occurring P = 1/R
- 3. Paleoflood hydrology
 - a. extending flood record back beyond historical records
 - (1) in U.S. gage histories back to about 100 yrs.
 - b. Paleoflood analysis a la Vic Baker and colleagues
 - (1) tree scars/ring analysis of trees on floodplains
 - (2) flood magnitude reconstruction from deposits and other markers
 - (3) Stratigraphy of slack water deposits
 - (a) fine grained seds. dep. in areas of backflow or flow separation from main current
 - i) suspension deposition
 - (b) sites
 - i) narrow bedrock reaches
 - ii) caves that are flooded
 - (c) provides estimates of highest or terminal elevation of water up tributaries of channels
 - i) i.d. highest el. of slack water seds. in distal reaches
 - ii) date by radio carbon, or alternatively pmag. (if old enough).
 - (d) Have extended flood frequency curves back 2000 to 10000 years
 - (4) Paleoflood data used to reconstruct effects of Quaternary climate change on geomorphic systems

Section 2 Flood Climatology

- I. Introduction
 - A. U.S. Climatic Regimes
 - 1. humid coastal plains
 - 2. arid desert basins
 - 3. temperate woodlands
 - 4. semiarid grasslands
 - 5. tropical islands
 - 6. subarctic interiors
 - 7. complex microenvironments in mountainscapes
 - B. Flooding in U.S.
 - 1. climate driven: more rain than drainage basin can store... flooding
 - 2. Types of weather conditions that cause flooding
 - a. convective thunderstorms
 - b. tropical storms/hurricanes
 - c. extratropical cyclones
 - d. frontal systems
 - e. rapid snowmelt
 - 3. Large-scale climate framework
 - a. seasonal availability and large-scale delivery pathways of atm. moisture
 - b. seasonal frequency, localtions, and degree of persistence of weather/ppt events
 - c. seasonal variation of climate, land surface conditions that effect runoff (antecedent soil moisture, snow cover)
- II. Moisture in Atmosphere
 - A. General
 - 1. Primary source = oceans
 - a. evaporation
 - b. moisture transport
 - c. general atmospheric circulation/diff. heating
 - 2. Precipitation process
 - a. warm air > moisture capacity
 - (1) moist air masses = warm, tropical ocean locals
 - (2) cold dry air masses = polar continental
 - b. Most precipitable moisture held in lower, warmer parts of the troposphere
 - (1) max moisture content in warm oceanic areas
 - (2) min moisture content in mountainous regions of western U.S.

- 3. Seasonal Flux in U.S.
 - a. Summer/July = max. ppt/water vapor on avg.
 - (1) concentrated in Gulf states
- B. Large-scale, moisture delivery pathways
 - 1. General
 - a. Moisture pathways in air determined seasonally by direction of surface winds
 - (1) January
 - (a) Northwesterly jetstream dips down into south central states
 - (b) moisture delivery from Gulf and southern Atlantic in southern states; delivery to NE along appalachians (winter storms in NE)
 - (2) April
 - (a) Moisture from Gulf/Atlantic pushes northward in east, se
 - (b) moisture from Pacific in West
 - (3) July: heavy rainfall month
 - (a) Pacific to west coast
 - (b) Atlantic to Gulf on east U.S./central U.S.
 - (4) October
 - (a) Gulf air shifts back to south as jet stream from NW begins to shift southward
 - b. Air Pathways shift seasonally
 - (1) determine montly precipitation patterns
 - (2) control tendency for regional flooding
 - (a) via intense/prolonged storms
 - c. Air mass source of moisture (regionally)
 - (1) Pacific Ocean
 - (a) seasonally shifts with seasons, from 60 to 35 N lat.
 - (b) westerly winds, moisture to west coast
 - (c) stabilizing effect to prevent extensive moisture from Pacific...
 - i) North Pacific anticyclone (high press)
 - ii) cold California current
 - a) especially in summer, with dry area along west coast
 - (d) Orographic effect with Cascades/Sierras
 - (e) Winter chinooks: modified dry Pacific air passes into western interior, with warm dry air, causing snow melt
 - (2) Atlantic Ocean-Gulf of Mexico
 - (a) dominant process of ppt delivery in east and central states
 - (b) Summer months

- i) subtropical high pressure of N. Atlantic shifts north and west allowing maritime tropical air masses to move onto continent
- ii) spring and summer rain in central/east U.S.
- (c) Gulf air to southwest occasionally
- (3) Arctic Region
 - (a) cold, relatively dry arctic air pushes south into U.S.
 - i) frontal system dynamics
 - a) cold air on bottom
 - b) collision with warm moisture laiden air on top
 - c) unstable, cyclonic frontal systems
- III. Atmospheric Processes that Release Moisture
 - General

1.

Α.

- Process of moisture release from atmosphere
 - a. controlled by uplift mechanisms that cool and condense layers of moist air leading to
 - (1) clouds development
 - (2) precipitation
 - (3) possible flooding
 - b. Air Uplift Mechanisms
 - (1) Thermal convection of moist, unstable air
 - (a) limited spatial distribution
 - (b) high intensity storms
 - (2) large-scale frontal convergence
 - (a) extensive spatial distribution
 - (b) low to mod. intensity
 - (3) forced vertical motions via perterbations in upper atmosphere
 - (a) local or widespread effects
 - (4) orographic lifting
 - (a) local or widespread effects depending on topographic extent and configuration
- B. Convectional Processes
 - 1. General
 - a. several mechanisms stimulated by convection
 - (1) air mass homogeneous throughout
 - (a) warm, wet
 - b. may act simultaneous with frontal or orographic conditions
 - c. process: thunderheads, cumulonimbus storm clouds
 - (1) high intensity, short duration storms
 - (2) flash flooding
 - (3) localized occurrence

- 2. Thunderstorm Activity
 - a. Character
 - (1) flashy, intense pppt
 - (2) regional variation in occurrence in U.S.
 - (a) Fla/ Gulf, highest occurrence in US
 - (3) warm, moist unstable air
 - (4) may form locally, or in concert with frontal systems
 - b. Flood generation
 - (1) usually storms don't produce enough ppt for flooding
 - (2) multicell clusters of prolongued duration can delivery hugh amts of ppt/flooding though
- 3. Mesoscale Convective Complexes and Systems
 - a. "MCC's" and MCS's
 - (1) huge, multiple celled, highly organized thunderstorm complexes
 - (2) can last for prolongued periods of time: 6-36 hours
 - (3) multiple, supercelled T storms
 - (a) tornadoes, lightening, locally intense ppt
 - (4) Common in spring and summer in Great Plains and Midwest
 - (5) e.g. Big Thompson Canyon flood in CO in 1972
- 4. Tropical Cyclones
 - a. largest atmospheric features produced by convective processes
 - (1) tropical low press. systems
 - (2) diamters = 60-600 miles
 - (3) sources: wester N.Atlantic, Gulf, Caribbean
 - (4) critical temps of sea-surface: >79 F
 - (5) late summer, early fall
 - b. Flood history
 - (1) commonly affect Eastern US
 - (2) have resulted in largest floods of record
 - (a) common to generate > 100 yr floods
 - (3) Tropical cyclones and flood processes
 - (a) coastal area storm surges
 - (b) hits land delivering much moisture
- C. Large-Scale Atmospheric Convergence
 - 1. General
 - a. collision of heterogeneous air masses
 - (1) ppt of > geographic extent
 - (2) long duration
 - (3) < intensity

- (4) localized instability
 - (a) secondary convective storms
 - i) T storms near front line
- b. Regional/U.S.
 - (1) cold polar air masses collide with warm tropical air masses
 (a) shifts seasonally
- 2. Extratropical Cyclones and Their Associated Fronts
 - a. Cyclone tracks as westerlies across U.S./Midwest
 - (1) winter: shift with southerly dip
 - (2) summer: maintained in northern lat.
 - b. Variations
 - (1) Great Lakes: local lake effect, snow squalls
 - (2) most active in spring
- 3. Precipitation-Enhancing, Upper Atmospheric Air Patterns
 - a. Modification to cyclonic systems
 - (1) jetstreams in upper atmosphere
 - (a) U.S. jetstream: west to east
 - (b) sinuous air flow patterns
 - (c) variability can control lower atmosphere cyclones, moving or stalling systems
- D. Orographic Lifting
 - 1. Process and Products
 - a. lifting of air masses over topography, mountains
 - (1) cooling air, moisture release
 - (2) wet cloudy windward slopes
 - (3) dry lee slopes
 - 2. Regional / US
 - a. moderate orographic effect with Gulf/Atlantic air over Appalachians
 - b. west: Oregon, WA, Calif.
 - c. local flash flooding
 - (1) > flood prone areas, as soil moisture maintained at or near saturation
 - (2) additional processes can easily max. out system
- IV. Antecedent Land-Surface Conditions
 - A. General
 - 1. Precipitation may not cause flooding, also controlled by ground conditions
 - a. urban areas, impervious mateiral
 - b. vegetative cover/ evapotransp.
 - c. soil moisture

- d. geology, soils, permeability
- e. snow cover, frozen ground
- B. Soil Moisture
 - 1. soil mosture content
 - a. pre-existing soil moisture
 - b. seasonal: evapotranspiration factor
 - (1) summer > Evapotranspiration, < flood potential, < soil moisture
 - (2) soil moisture in general > late winter, spring
 - c. soil moisture determines storage ability of hillslopes
- C. Snow Cover, Frozen Ground and Snowmelt
 - 1. Frozen ground = impervious surface; > flood potential
 - a. < temps, > frozen ground
 - b. snow pack conditions, thickness
 - c. largest snowfall recorded, Mt. Rainier 1971-72: 1120 inches (wow!!!)
 - d. nice maps of average duration of frozen ground in US
 - 2. spring rain on snow, + snow melt = flood

Section 3. Precipitation Analysis

- I. Introduction
 - A. Precipitation = major source of hydrologic input for region
 - 1. affects ecology, geogrphy and land use
 - 2. Planning/land use data
 - a. amounts of rain and snow
 - b. seasonality
 - c. sizes and intensities of storm
- II. Precipitation Data Analysis
 - A. Measurement of Precipitation at a Point
 - 1. rain guage
 - B. Measurement of Precipitation over an Area
 - 1. Errors with point measurement of precipitation
 - a. several% for single storm
 - b. up to 30% with strong winds
 - c. local obstructions like trees
 - d. changes in instrumentation
 - 2. Need for areal distribution of data collection points
 - a. collection at no. of pt. locations throughout area
 - b. areal averaging of rainfall (techniques)
 - (1) arithmetic average of all pt. data
 - (2) Thiessen-weighted average
 - (3) isohyetal (contouring) method
 - c. Data collection factors
 - (1) density of pt. source measuring devices
 - (a) variable intensity sites
 - i) arid areas
 - ii) mountainous area
 - (b) sparse network of collection guages will underestimate rainfall intensity
 - C. Analysis of Rainfall Data
 - 1. Types of Data
 - a. daily total ppt
 - b. individual storm ppt
 - c. seasonal totals
 - d. frequency of small amt.s of ppt
 - e. intensity of rainfall events
 - f. duration of event
 - g. aerial extent of event

- D. Estimating Missing Data
 - 1. sources of gaps in rainfall data
 - a. gauging installed at wrong time period
 - b. malfunctions
 - 2. Extrapolations and corrections
 - a. regression analysis
 - (1) time regression
 - (2) spatial regression
 - b. weighted averaging of surrounding gauges about a gauge with missing data
 - 3. Extrapolation works well in cyclonic-regional weather patterns, but will be associated with error in flashy areas such as arid/mountain regions
- E. Analysis of Total Rainfall Within Specific Measurement Periods
 - 1. aritmetic mean of annual totals of precipitation
 - 2. standard deviation: variability of individual years about the mean for all years
 - a. normal distributions
 - (1) 68% of all occurrences fall within 1 S.D. above or below mean
 - 3. Cumulative Frequency Analysis
 - a. measured values of annual ppt vs. percentage of all events less than or equal to that event
 - (1) shows graphical, aritmetic techniques
 - (2) gives some examples of techniques
- III. Characteristics of Individual Storms
 - A. Storm intensity data
 - 1. useful in calculations of storm runoff/management
 - a. design of sewers/flood control structures
 - b. calculating hydrologic budgets
 - 2. Recording Rain Gauges
 - a. timing of storms
 - b. intensity of storms (amt/time)
 - c. storm durations
- IV. Total Storm Rainfall
 - A. total amt. of ppt/storm event
 - 1. duration (time)
 - 2. amount of precipitation (mm)
 - 3. intensity = mm/hr (amt/time)
- V. Intensity-Duration Analysis
 - A. Intensity-Duration-Frequency Analysis of Point Rainfall
 - 1. Considerations
 - a. Economics: must design structures to accommodate reasonably large-size event within economic constraints

- b. Geomorphic Work
 - (1) work done during extreme events
 - (a) although less than mid-size events
- c. Recurrence interval and maximum events
 - (1) is it worth planning/\$\$ for 500 yr event?
- d. Basic Pattern
 - (1) short duration: high intensity
 - (2) long duration: low intensity
- 2. Data for Intensity-Duration-Frequency Analysis
 - a. Intensities calculated at varying time intervals (5 min, 1 hr, 2 hr, 6 hr 24 hr, etc)
 - b. Freqeuncy analysis
 - (1) Recurrence Interval = "return period"
 - (a) T = 1/p = (n+1)/m
 - i) where T = recurrence interval in yrs, p = probability of equal or exceeding given intensity
 - (2) Data for highest and lowest values sparse, and must be extrapolated
 (a) paleoflood analysis used to push limits of extrapolation
 - (3) Authors give some graphical techniques for analysis
- VI. Storms and Precipitation
 - A. Temporal Distribution of Rainfall During a Storm
 - 1. analyzing changes in rainfall intensity with time during a given event
 - B. Spatial Characteristics of Storm Rainfall
 - 1. analyzing spatial changes in intensity during a given event
 - C. Probable Maximum Precipitation
 - 1. statistically estimating the probability of max. ppt. over a given time
 - D. Long-Term Variations of Precipitation
 - 1. short and long term climate change prediction??
 - 2. climate modeling??
 - E. Sources of Precipitation Data
 - 1. National weather service

Section 4 - Calculation of Flood Hazard

- I. Introduction
 - A. Flood Significance
 - 1. annual \$ loss; very high
 - a. flood control/mitigation
 - 2. large floods
 - a. Asia
 - B. Planning Perspectives
 - 1. planners should use hydrologic approach
 - 2. design to mitigate flood problems
 - 3. familiarize with hydrologic problems
- II. Storage and Transmission of Floodwater
 - A. Surface runoff
 - 1. drained to channels, runoff > channel capacity = flood
 - a. climate/rainfall events
 - b. dam failure
 - c. glacial outburst (high meltwater)
 - B. Flood Process
 - 1. flood wave
 - a. > Q, < Q as wave down channel
 - b. progressive flow: floodwave downstream w/o losing shape of slug of water
 - c. Reservoir action or pondage: wave is attenuated by storage in channel/valley bottom
 - e.g. drainage reservoir: flow in > flow out (at spillway) as f(reservoir capacity)
 - 2. channel system
 - a. natural reservoir/storage capacity of flood plain-channel system
 - (1) natural flood attenuation characteristics
 - b. hydrograph analysis and case studies of natural flood wave attenuation
 - with > drainage area, max. flood discharge < as a function of reservoir capacity of basin, floodplain
- III. Flood Prediction
 - A. Predicting occurrence of floods; necessary considerations
 - 1. volume of storm runoff
 - 2. peak flood discharge
 - 3. flood height or stage
 - 4. time distribution from hydrographs (Q vs. time)
 - 5. area inundated (flood prone areas)
 - 6. velocities fo flow across valley bottom

- IV. Flood Records
 - A. past records are key to future prediction
 - 1. river guaging stations (US corps of engineers)
 - a. most stations on large-mod. rivers
 - b. little data on small drainages
 - 2. local news/historical records
 - 3. USGS water supply papers
 - 4. Soil/Ag cons. service
 - a. small watershed stations
 - 5. forest service experimental stations
- V. Hydrograph Separation
 - A. Hydrograph of stream
 - 1. Q vs. time (x-axis)
 - 2. flood character
 - a. rising limb
 - b. peak
 - c. falling limb
 - 3. Hydrograph = stormflow + baseflow
 - a. how to separate?
 - B. Separating storm from base flow
 - 1. hydrograph separation techniques
 - 2. shows graphical methods for differentiating hydrograph data
- VI. Estimation of Storm Runoff Volume
 - A. Estimating Storm runoff volumes
 - 1. important for engineering design, capacity and conveyance mechanisms
 - B. Prediction Techniques
 - 1. correlation of rainfall ppt and Q
 - a. regression/prediction stats.
 - b. antecedent ppt index: estimation of pre-existing soil moisture, and infiltration/storage potential
 - 2. Water Budget Analysis
 - a. est. infiltration, interception and storage
 - 3. US Soil Conservation Service
 - a. runoff vs. soil/land use conditions
 - (1) generate rating curve for catchments
 - (2) lists numerous tables of hydrologic estimate parameters

- VII. Calculating Flood Peak Discharges
 - A. Introduction
 - 1. Peak discharges from streams must be calculated for planning purposes
 - a. problem: variable data set, some streams gauged, some ungauged
 - (1) statistical prediction techniques
 - (2) field checking and data analysis
 - B. The Rational Method
 - 1. Rational Runoff Method: predicts peak runoff rates from data on rainfall intensity and drainage-basin characteristics
 - a. ideal: catchments < 200 ac
 - b. widely used for sewer design
 - 2. Assumptions
 - a. uniform rain intensity over entire basin
 - b. runoff > downbasin
 - c. Q will approach constant max. as steady state is reached
 - 3. Technique
 - a. time of concentration: time lapse required for steady Qmax for basin to be attained; at time of concentration:
 - (1) Q=CIA

where Q = peak runoff, C = runoff coefficient, I = rainfall intensity, A = drainage area (english units of cu. ft/sec, in/hr and acres)

- (a) c = f(soil, topo, roughness, vegetation, land use); taken from table estimates (range 0.4-0.95)
- b. Estimating time of concentration
 - (1) $tc = L^{1.15} / (7700H^{0.38})$

where tc = time of conc., L = length of catchment, H = vertical diff of el. at divide and el. at mouth of catchment.

- c. Rational method critique
 - (1) does not meet assumptions ideally, but is consistent enough in results
 - (2) works best for urban storm runoff prediction
- C. Probability Analysis of Flood Records
 - 1. Concept: i.d. probability of floods occurring greater than certain limits a. for use in planning, insurance, etc.

- 2. Techniques and ideas
 - a. use momentary peak Q rather than avg. daily Q
 - b. fit probability distribution to data, then use to predict average recurrence intervals of floods of given magnitudes
 - c. Probability distributions that have been used
 - (1) Lognormal distribution
 - (2) Gumbel type I distribution
 - (3) Gumbel Type III distribution
 - (a) Gumbel distributions

specially designed graph paper for plotting Q vs. Recurrence interval

- i) data plots as straight line if it fits the distribution
- (4) Pearson Type III distribution
 - (a) widely used by US feds
 - (b) sl. more complicated to use
- d. Examples of Technique
 - (1) Recurrence interval: T = (n + 1)/m

T = recurrence interval in years, n = total number of years of record, m = rank of peak discharge event for given year

- (2) plot of prob. graph
 - (a) i.d. outliers and make decision to use or not
 - (b) extrapolate to low and high Recurrence interval
- D. Stage-Frequency Curves for a Station
 - 1. Using stage data as opposed to discharge data
 - a. discharge rating curves: calibrating river stage to Q estimates
 - (1) problem change in channel morphology over time will affect relationship between stage and Q
 - (2) needed: error estimation and rating curve updates
- E. Maximum Probable Flood
 - 1. Estimation of possibility of maximum flood
 - 2. controlling factors to be considered
 - a. max. prob. rainfall intensity
 - b. snowmelt + rain storms

- c. ice jams
- d. antecedent moisture
- e. dam bursts
- F. Regional Flood Frequency Curves
 - 1. problem: single gauging station data may be subject to large errors in probability estimates
 - a. short records, missing data, etc.
 - 2. Regional Flood Frequency curves
 - a. estimating Q max for basin as a whole based on probability distributions
 - b. Gives example for Vermont experimental watershed
 - (1) average recurrence intervals for a no. of stations in basin, then average for basin as a whole
 - 3. Uses
 - a. extrapolating Q flood frequency from known to unknown areas for planning
 - (1) developing regional flood freq. curves for use
 - (2) USGS has developed these
 - (a) minimum basin area of 10 sq. miles
 - (b) must extrapolate to smaller basins
 - i) apply to areas of uniform physiography, vege., etc.
- G. Flood-frequency Curves for Large Rivers
 - 1. Problem: large rivers collect drainage from several watersheds
 - a. may not fit pattern of regional curves
 - b. modification and adjustment in order
- VIII. Use of Flood Frequency analysis in Urban Catchments
 - A. urbanization generally > size of flood Q to basin
 - 1. studies to characterize effect of urbanization with respect to Q over time as urbanization advances
- IX. Flood Routing
 - A. general
 - 1. design problems for conveyance and management of storm Q
 - a. dams, spillways, levee systems
 - B. Reservoir Routing (using reservoirs to manange flood Q)

C. Channel Routing (channel design and modification to manage flood Q)