Geomorphology G322

Class Exercise on Landscape Erosion Rates Using the Baker Creek Landslide Geometry Data c:wou:geomorph:f2001:bakerex.wpd

The class measured the geometry of a landslide scar at Baker Creek, near Sulpher Springs. The scar shape is approximated by that of an upside down equilateral triangle. The geometric relations and a sketch map of the field measurements is shown below.

$\mathrm{w}=\operatorname{scar}$ width $(\mathrm{m}), \mathrm{d}=\operatorname{scar}$ depth (m), $\mathrm{L}=$ slope length (m)

Baker Creek Landslide Data

Survey Line No.	Scar Width (m)	Scar Depth (m)	Slope Distance (m)	Unit Slope Length (m)	Unit Scar Area (m²)	Unit Scar Volume (m^{3})
0	N/D	N/D	0			
1	6.25	2.5	5	$\mathrm{L} 1=$	A1 $=$	V1=
2	11.5	3.2	10	$\mathrm{L} 2=$	A2 $=$	V2 $=$
3	15	5.0	15	$\mathrm{L} 3=$	$\mathrm{A} 3=$	V3=
4	14	5.3	20	$\mathrm{L} 4=$	A4 =	V4=
5	13	3.0	25	L5 =	A5 =	V5=
6	13	1.8	30	L6 =	A6 =	V6=
7	13	1.8	40	$\mathrm{L} 7=$	$\mathrm{A} 7=$	V7=

Total Scar Volume $\left(\mathrm{m}^{3}\right)=$ \qquad
Fill in the Table; follow the procedures below.
Step 1. Calculate the unit length for each survey line (e.g. L1 = slope distance 1 - slope distance 0).
Step 2. Calculate the unit scar area for each survey line (area of triangle $=0.5 * \mathrm{~d} *$ w)
Step 3. Calculate the unit scar volume for each survey line (unit L * unit Area)
Step 4. Sum the unit area volumes to determine the total landslide volume.
Work through the following problems:

1. Assume that a small Coast Range watershed has a drainage area of $10.2 \mathrm{~km}^{2}$, and a small-scale landslide density of $50 / \mathrm{km}^{2}$ (Assume that all landslides are of a scale exactly like the Baker Creek example above). Considering a recurrence interval of 2000 years for each landslide, calculate the following parameters:
A. The total number of landslides that will occur in the watershed in 2000 years.
B. The total volume of landslide transport over a period of 2000 years.
C. The total volume of landslide transport over a period of 100,000 years.
2. Given the basin area $\left(\mathrm{km}^{2}\right)$ and total volume transported over 100,000 years (m^{3}, from 1 C above), calculate the average vertical thickness of regolith that is denuded by landslide processes during that period of time. Answer in meters.
3. Calculate the rate of vertical regolith denudation in $\mathrm{mm} / 1000 \mathrm{yrs}$.
4. Given that the ratio of bulk density of bedrock:regolith is 0.6 , calculate the average rate of vertical bedrock denudation from answer 3 above. Answer in mm/1000 yrs. Answer in m/M.Y.

