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The Taita Hills form the northernmost part of the Eastern Arc Mountains of Kenya and Tanzania, is one of the
world's most important regions for biological conservation. Due to the expansion of agricultural activities
during the last centuries, currently only 1% of the original vegetation remains preserved in the Taita Hills.
These landscape changes, together with potential increases in rainfall volumes caused by climate change,
offer a great risk for soil conservation. The present research aims to evaluate how future changes in climate
and land use can alter, in time and space, the variables inherent to a widely used soil erosion model, and to
assess the impacts of these changes for soil conservation. A modelling framework was assembled by
integrating a landscape dynamic model, a soil erosion model and synthetic precipitation datasets generated
through a Monte Carlo simulation. The results indicate that, if the current trends persist, agricultural areas
will occupy roughly 60% of the study area by 2030. Although these land use changes will certainly increase
soil erosion figures, new croplands will likely take place predominantly in the lowlands, which comprises
areas with lower soil erosion potential. By the year 2030, rainfall erosivity is likely to increase during April
and November, while a slight decrease tendency is observed during March and May. An integrated
assessment of these environmental changes, performed using the modelling framework, allows a clear
distinction of priority regions for soil conservation policies during the next 20 years.
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1. Introduction

The replacement of forests, wetlands, savannahs and other native
landscapes is a severe threat in the capacity of the environment to
sustain food production, maintain freshwater and other ecosystem
services (Foley et al., 2005). Currently, almost one-third of the world's
land surface is under agricultural use and millions of hectares of
natural ecosystems are converted to croplands or pastures every year.
In sub-Saharan Africa, 16% of the forests and 5% of the open
woodlands and bushlands were lost between 1975 and 2000, while
the agricultural land has expanded 55% and agricultural production
has increased almost 50% (Brink and Eva, 2009).

Anthropogenic changes in the environment are also affecting the
global climate (IPCC, 2007). Changes in precipitation and temperature
patterns will likely have important impacts on the sustainability of
agricultural systems. For instance, it is expected that without proper
investments in water management, climate changes may increase in
roughly 20% the global irrigation water needs by 2080 (Fischer et al.,
2007). Climate changes may also adversely affect agricultural
production, access to food and stability of food supplies, having direct
impacts on food security (Schmidhuber and Tubiello, 2007).
The association of climate changes and land cover changes is
particularly threatening soil conservation. The natural vegetation
protects the soil against the impacts of rainfall and it is a source of
organic matter to the soil. These factors improve infiltration and
enhance the recharging of groundwater reservoirs. When vegetation
cover is displaced, infiltration capacity is decreased, resulting in
surface runoff, which will carry sediments and nutrients into rivers
(Van Oost et al., 2000; Zuazo and Pleguezuelo, 2008). Moreover,
changes in precipitation volume and intensity caused by climate
changes may increase the energy available in rainfall for detaching
and carrying sediments. According to Yang et al. (2003), the global
average soil erosion is projected to increase approximately 9% by
2090 due to climate changes.

Although soil erosion is a natural and inevitable process, the
accelerated rates of soil loss, caused by the factors mentioned above,
represent a serious environmental problem. For instance, increased
rates of soil erosion are directly associated with nutrient loss, which
may reduce agricultural productivity (Bakker et al., 2007) and cause
water bodies' eutrophication (Istvánovics, 2009). In some cases,
advanced stages of soil erosion, such as rill and gully erosions, can
devastate entire areas, turning them unusable for agricultural
purposes (Valentin et al., 2005; Kirkby and Bracken, 2009).

In this context, the improvement of models and computer capacity
in the past decades allowed an increasing number of studies aiming at
the sustainable use of natural resources and land use planning. For
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instance, land use and land cover change (LUCC) simulation models
provide robust frameworks to cope with the complexity of land use
systems (Veldkamp and Lambin, 2001). Such models are considered
efficient tools to project alternative scenarios into the future and to
test the stability of interrelated ecological systems (Koomen et al.,
2008). Soil erosion models, in turn, are designed to estimate soil loss
figures by simulating the processes involved in the detachment,
transport and deposition of sediments. Existing soil erosion models
vary in terms of complexity and data requirement. The concept of
such models can be based on empirical observations, physical
equations or a combination of both (Merritt et al., 2003).

Nevertheless, land use and soil erosion are closely linkedwith each
other, with local climate and with society, assembling a very complex
system. Although many studies have been undertaken to separately
understand each of these processes, scientists currently face the
challenge to integrate these studies into more complex frameworks.
The understanding of these interconnected relations is an essential
step for elaborating public policies that can effectively lead to the
conservation of natural resources.

In this study, an integrated modelling framework was assembled
in order to investigate the potential impacts of agricultural expansion
and climate changes on soil erosion in the Taita Hills, Kenya. The Taita
Hills are home for an outstanding diversity of flora and fauna and a
high level of endemism (Burgess et al., 2007). The landscape of
the Taita Hills has been drastically changed during the past centuries
due to agricultural expansion, and soil erosion problems have been
identified in the area (Sirviö et al., 2004). Hence, the region is
considered to have exceptional importance for biological and natural
resources conservation.

2. Study area

TheTaitaHills are located in thenorthernmost part of the EasternArc
Mountains of Kenya and Tanzania, in the middle of the Tsavo plains of
the Coast Province, Kenya (Fig. 1). The Taita Hills cover an area of
approximately 850 km2. The population of the whole Taita-Taveta
district has grown from 90,146 in 1962 persons to over 300,000 in 1999
(Republic of Kenya, 2001). The indigenous cloud forests have suffered
substantial loss and degradation for several centuries as they have
Fig. 1. Geographic location of the Taita Hills. The detail shows t
been converted to agriculture, because of the abundant rainfall and rich
soils that provide good conditions for agricultural production (Clark and
Pellikka, 2009). Approximately half of the cloud forests in the hills has
been cleared for agricultural lands since 1955 (Pellikka et al., 2009), but
on the other hand the forest cover is not drastically changed due to
introduction of exotic plantations. Currently, only 1% of the original
forested area remains preserved.

Located in the inter-tropical convergence zone, the area has a
bimodal rainfall pattern, the long rains occurring in March–May and
short rains in November December. The agriculture in the hills is
intensive small-scale subsistence farming. In the lower highland zone
and in upper midland zone, the typical crops are maize, beans, peas,
potatoes, cabbages, tomatoes, cassava and banana. In the slopes and
lower parts of the hills with average annual rainfall between 600 and
900 mm, early maturing maize species and sorghum and millet
species are cultivated. In the lower midland zones with average
rainfall between 500 and 700 mm, dryland maize types and onions
are cultivated. The two growing seasons, totaling to 150 170 days,
coincide with the long and the short rains (Jaetzold and Schmidt,
1983). The land is prepared during the dry season, and the crops are
seeded prior to the short rains and long rains. Harvesting takes place
after the end of the rainy seasons.

3. Material and methods

In the presented research future agricultural expansion and
climate change scenarios were simulated in order to evaluate their
potential impacts on soil erosion in the Taita Hills, Kenya. To achieve
this objective a modelling framework was assembled by coupling a
landscape dynamic simulation model, an erosion model and synthetic
precipitation datasets generated through a Monte Carlo simulation.
The purpose of this framework was to evaluate how future changes in
climate and land cover can alter, in time and space, the variables
inherent to a widely used soil erosion model.

Remote sensing and GIS techniques were combined to provide
the necessary inputs for the modelling framework. A flow chart
illustrating the components of the modelling framework is presented
in Fig. 2, and themain components involved in the study are described
in detail below.
he Digital Elevation Model shaded-relief of the study area.



Fig. 2. Flow chart illustrating the integrated modelling framework concept.
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3.1. Agricultural expansion model

Dynamic models operating on a cellular automata basis have
arisen as a feasible alternative for the analysis of land use dynamics
and in the exploration of future landscape scenarios. In this study, a
spatially explicit simulation model of landscape dynamics, DINA-
MICA-EGO (Soares-Filho et al., 2002, 2009), was applied to simulate
future scenarios of land use in the Taita Hills. The model receives as
inputs land use transition rates, landscape variables and landscape
parameters. The landscape parameters are intrinsic spatially distrib-
uted features, such as soil type and slope, which are kept constant
during the simulation process. The landscape variables are spatio-
temporal dynamic features that are subjected to changes by decision
makers, for instance roads and protected areas.

The model was driven by land use and land cover maps (LULCM)
from two selected dates (Clark and Pellikka, 2009): 1987 (initial
landscape) and 2003 (final landscape), which are used as inputs to
represent the historical land use transitions in the study area. The
dates of the LULCM were chosen based on two criteria. The first
criterion was that the landscape changes between the initial and final
landscape should accurately represent the ongoing land change
activities in the study area. That is to say, the agricultural expansion
rates between 1987 and 2003 were assumed to retrieve a consistent
figure of the current trends. The second criterion relied on the
availability of cloud free satellite images to assemble the LULCM. In
total, ten landscape attributes (variables/parameters) were used as
inputs for the model: distance to roads, distance to markets, altitude,
distance to rivers, protected areas, soil type, slope, insolation, mean
annual precipitation and distance to already established croplands. All
landscape attributes were represented by raster images with a 20 m
spatial resolution.

After the transition rates are defined and the role of each landscape
attributed is evaluated, the model uses stochastic algorithms to
allocate land changes and simulate landscape scenarios (Almeida
et al., 2005). In this study, the LULCM from the year 2003 was
considered to be the initial landscape and the model was applied to
simulate land changes up to 2030. In this case, an exploratory scenario
was simulated. An exploratory scenario is a sequence of emerging
events (Alcamo, 2001). Namely, the average agricultural expansion
rates observed from 1987 to 2003 in the study area were used to build
an exploratory scenario with stationary behaviour for the year 2030.

The model performance for the study area was evaluated in a
previous study (Maeda et al., 2010) using amethodproposedbyHagen
(2003), inwhichmultiple resolutionwindows are used to compare the
simulated and the reference maps within a neighbourhood context.
The performance achieved in the LUCC model calibration was
considered satisfactory, achieving spatial fittings from 75%, at a spatial
resolution of 100 m, up to 90% at a spatial resolution of 380 m.
3.2. Synthetic precipitation datasets

Climate change scenarios simulated by General Circulation Models
(GCMs) generally provide datasets at spatial resolutions that are
considered too coarse for studies at local scales. Moreover, many
spatial downscaling approaches, such as dynamic downscaling,
require additional datasets that are frequently unavailable in poor
countries. Hence, a simplified approach was carried out to generate
synthetic precipitation datasets and simulate plausible climate change
scenarios for the study area.

Firstly, high spatial resolution precipitation grids were created by
interpolating rainfall observations from the Kenya Meteorological
Department obtained from eleven ground stations in the Taita Hills
and surrounding lowlands. The interpolation was carried out using
the ANUSPLINE software (Hutchinson, 1995). In total, 17 years of
observations, from 1989 to 2005, were used to create monthly
average rainfall maps. Next, the probability distribution function
(PDF) for monthly precipitation was estimated in each point of the
grid using a gamma distribution function. The gamma distribution
was chosen for being able to provide flexible representation of a
variety of distribution shapes (Wilks, 1990). Moreover, this type of
distribution has been successfully applied in recent studies to
represent monthly rainfall in East Africa (Husak et al., 2007). The
gamma PDF f(x) is given by:

f ðx ja; bÞ = 1
baΓðaÞ x

a−1e
x
b ð1Þ

ΓðaÞ = ∫∞
0 e

−t ta−1dt ð2Þ

where a and b are the distribution parameters and Γ is the gamma
function. The parameters of the distribution were estimated in the
software MATLABTM using the maximum likelihood approach. After
the parameters were solved for every point in the grid, a Monte Carlo
simulation was carried out to generate synthetic monthly precipita-
tion datasets. For the simulation, 100 random values were extracted
from the PDF in each point of the grid, to represent an estimated
monthly volume of precipitation. The synthetic precipitation obser-
vation in the point is then considered to be the average of the 100
iterations.

Four synthetic precipitation datasets were generated for this study
in order to simulate different scenarios. In the first scenario (Sy), a
synthetic precipitation dataset was generated by running the Monte
Carlo simulation using the same characteristics observed in the
historical dataset (1989 to 2005). In other words, the Sy represents
the monthly precipitations in a scenario without climate change.
Throughout the present study the Sy scenario is considered the
reference for comparisons with the climate change scenarios.

In the three other scenarios, climatic changes were simulated by
perturbing the PDF during the Monte Carlo simulation. In order to
delineate plausible scenarios, the PDFs were perturbed based on
precipitation responses to climate change (percent changes) simu-
lated by a GCM between the years 2011 2030. Given the coarser
spatial resolution of the GCM, just the GCM grid point closest to the
study areawas used as reference for the precipitation response values.

The GCM chosen to be used in the presented study was the ECHAM
version 5, developed at the Max Planck Institute for Meteorology in
Hamburg. In a comparison with five other GCMs the ECHAM achieved
the best results in simulating the rainfall patterns in the East-African
region (McHugh, 2005). Moreover, the ECHAM was successfully used
in recent studies aiming to evaluate the impacts of climate changes on
agricultural systems in East Africa (Thornton et al., 2009, 2010).

The climate changes simulated by the ECHAM5 for three greenhouse-
gas emission scenarios (SRES, Special Report on Emissions Scenarios)
were used as reference in this study for perturbing the precipita-
tion PDFs. Namely, the emission scenarios SRA1B, SRA2 and SRB1

image of Fig.�2


282 E.E. Maeda et al. / Geomorphology 123 (2010) 279–289
(Nakicenovic et al., 2000) were used to generate three synthetic
precipitation datasets: SyA1B, SyA2 and SyB1, respectively. The data
necessary for this procedure were obtained from the IPCC data
distribution centre (http://www.ipcc-data.org).

The SRA1B emission scenario simulates a future world of rapid
economic growth, low population growth and rapid introduction of
new and more efficient technology. The SRA2 scenario represents a
very heterogeneous world, with high population growth, slower
technological changes and less concern for rapid economic develop-
ment. Lastly, the SRB1 simulates a world with rapid changes in
economic structures toward a service and information economy, with
the introduction of clean and resource-efficient technologies (IPCC,
2007).

3.3. Soil erosion model

The LUCC model and the synthetic precipitation datasets were
integrated with a soil erosion model. The objective of this approach
was to evaluate how agricultural expansion, together with climate
change, can modify the variables of a widely used soil erosion model,
allowing a quantitative and qualitative assessment of the impacts of
these changes for soil conservation. The soil erosion model used in
this study was the Universal Soil Loss Equation (USLE) (Wischmeier
and Smith, 1978).

The USLE and its revised version, RUSLE (Renard et al., 1997), have
been extensively used worldwide during the last decades (Kinnell,
2010). Even though these models are known for their simplicity, their
effectiveness has been demonstrated in many recent studies (e.g.
Beskow et al., 2009; Terranova et al., 2009; Nigel and Rughooputh,
2010). The USLE is given as:

A = R × K × LS × C × P ð3Þ

where A is the annual average soil loss [t ha−1 year−1], R is the
rainfall erosivity factor [MJ mm ha−1 h−1], K is soil erodibility [t ha h
MJ−1 mm−1], LS is the topographical factor [-], C is the vegetation
cover factor [-], and P represents erosion control practices [-].

Provided the fact that the K and LS factors are intrinsic
characteristics of the landscape, they can be kept constant in all
simulated scenarios. On the other hand, LUCC directly affect the C
factor. The changes were analysed by evaluating the average C factor
value in the study area during 1987, 2003 and in the simulated
scenario for 2030. The potential impacts of agricultural expansion for
soil conservation were also assessed by analysing the spatial
distribution of croplands in relation to the K and LS factors. Possible
changes in the P factor were not addressed in the present study.

The rainfall erosivity factor (R) is a numerical index that expresses
the capacity of the rain to erode a soil (Wischmeier and Smith, 1978).
Hence, the R factor is directly affected by changes in precipitation
pattern. These changes were evaluated at monthly and yearly time
steps. Additionally, the soil erosion potential was calculated by
excluding the anthropogenic variables from the USLE equation
(C and P). This approach is needed to clearly understand the role of
external factors in the system, without the influence of the changes in
the landscape cause by human activities.

Although the USLE provides a simple and useful tool for soil
conservation, studies commonly neglect the calibration and validation
of this model. Given the absence of reliable data for calibration, the
presented study did not attempt to provide soil loss estimation
figures. Instead, the evaluation of the soil erosion potential among the
different scenarios was based mainly on a comparative analysis of
changes, following the procedure proposed by Miller et al. (2002) and
Kepner et al. (2004). Such procedure assumes that, using percent
change observations, the parameters incorporated in an eventual
calibration would be partially or totally cancelled, providing more
realistic figures than absolute values of soil loss. We analyzed the
absolute changes in soil erosion potential only qualitatively, taking
into account the spatio-temporal distribution of changes.

The R factor was calculated using the method proposed by Renard
and Freimund (1994), and recently applied in Beskow et al. (2009). The
method is based on an empirical relationship between rainfall erosivity
and the Fournier Index (FI; Fournier, 1960). FI gives indication of
climatic aggressiveness, which has a high correlation with the amount
of sediment washed into the stream by surface runoff. The R factor
was calculated as follows:

FI =
p2i
p

ð4Þ

ri =
125:92 × FI0:603 + 111:173 × FI0:691 + 68:73 × FI0:841

3
ð5Þ

R = ∑12
i = 1ri ð6Þ

where pi is the average monthly rainfall [mm] for month i, P is
the mean annual precipitation [mm], and ri is the average monthly
erosivity [MJ mm ha−1 h−1 month−1].

The K factor was calculated using the method proposed by
Williams and Renard (1983). This approach was chosen for being
broadly used in recent studies (e.g. Xiaodan et al., 2004; Rahman et al.,
2009) and for requiring input variables that are commonly available
worldwide. The method is described by the following equations:

K = 0:2 + 0:3 exp −0:0256 Sd 1− Si
100

� �� �� �
×

Si
Cl + Sið Þ

� �0:3

× f1−0:25C = ½C + expð3:72−2:95CÞ�g

×
1−0:7SNð Þ

SN + exp 5:51 + 22:9SNð Þ½ �
� �

ð7Þ

SN =
1−Sd
100

ð8Þ

where Sd is the content of sand (%), Si is the content of silt (%), Cl is the
content of clay (%), and C is the content of organic carbon (%).
Subsequently, the K factor units were properly converted to the SI. The
data necessary for these calculations were obtained from the Soil and
Terrain Database for Kenya (KENSOTER), which provides a harmo-
nized set of soil parameter estimates for Kenya (Batjes and Gicheru,
2004). The KENSOTER dataset was compiled by the Kenya Soil Survey
and the World Soil Information (ISRIC), according to the SOTER
(Soil Terrain Database) methodology. The SOTER approach allows the
characterization of areas with individual patterns of landform, surface
form, slope, parent material, and soils (Batjes et al., 2007). The
KENSOTER dataset version 2.0 is available at a scale of 1:1,000,000.

The LS factor was calculated in the software USLE2D (Van Oost
et al., 2000), using the algorithm proposed by Wischmeier and Smith
(1978). This calculation was performed based on a 20 m spatial
resolution Digital Elevation Model (DEM) interpolated from 50-foot
interval contours captured from 1:50,000 scale topographic maps
(Clark, 2010). The estimated altimetric accuracy of the DEM was±
8 m and the planimetric accuracy of±50 m.

4. Results

The land cover maps resulted from the classification of the SPOT
images and the landscape scenario for the year 2030, simulated using
the LUCC model, are shown in Fig. 3. The overall accuracy of the 2003
land cover map was 89%, with a Kappa index for agreement of 0.87
(Clark and Pellikka, 2009). Accuracies were good with the croplands
class, for example, having a producer's accuracy of 96% and a user's

http://www.ipcc-data.org


Fig. 3. Historical and simulated land use/cover changes between 1987 and 2030. (a) Historical land cover map for 1987; (b) that for 2003; (c) simulated exploratory scenario
for 2030; and (d) percentage of the land cover classes in studied years.
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accuracy of 82%. The exception was the lower producer accuracies of
the shrubland and grassland classes, due to misclassification errors
with certain areas of cropland where either shrub-like or grass-like
crops gave very similar spectral and textural characteristics in the
SPOT imagery. Because of a lack of timely ground reference test data
or aerial photography, the accuracy of the 1987 classification could
not be assessed directly. However, given the same classification
methodology was applied to both scenes, the 1987 map accuracy was
assumed to be similar to that of the 2003 map.

The annual average agricultural expansion rates observed from
1987 to 2003 are shown in Table 1. The highest conversion rates were
observed in the transition from woodlands to agriculture. However,
according to absolute numbers, shrubland areas are the most affected,
given that currently they represent the predominant vegetation type
in the region. The small regions covered with broadleaved forests
Table 1
Annual average agricultural expansion rates.

Original vegetation Annual conversion rate (%)
(baseline 1987 2003)

Shrubland 1.305
Woodland 2.013
Plantation forest 1.161
Broadleaved forest 0.289
Grassland 0.310
were nearly untouched, presenting low conversion rates, and the total
area decreased from 7.7 to 6.9 km2 during the observed period.

In 1987 croplands were already clearly established in the Taita
Hills (central area in the maps). This is explained by the favourable
climatic and edaphic conditions for agricultural activities (e.g. high
precipitation rates), which resulted in the clearance of large areas of
forest during the last century. Between 1987 and 2003, croplands
started to be implemented with higher intensity on the lowlands,
provided that suitable areas for agriculture activities in the hills
had already been taken almost entirely. This trend is clearly reflected
in the LUCC simulation results. In the simulated scenario, the
cropland areas expanded to around 515 km2 in 2030, corresponding
to about 60% of the study area. This represents an increase of 40%
in comparison to the year 2003, when croplands occupied around
365 km2.

These land changes have direct impact on the vegetation cover factor
of the USLEmodel. Previous studies have shown that croplands increase
soil exposure to weathering more than original vegetation such as
forests or shrublands. For this reason theC factor of agricultural areas are
usually higher, resulting in increased soil erosion rates. The C factor
values used for this same area by Erdogan et al. in press indicate that
average C increased from 0.165 in the year 1987 to 0.181 in 2003,
representing an increase of 9.6%. In the LUCC simulation for the year
2030, C increased by 8.8% from 2003, reaching 0.197.

The distribution of cropland patches, for each of the analysed years
in relation to the LS factor is presented in Fig. 4. As easily deduced
from Eq. (3), areas with higher LS values are likely to undergo higher
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Fig. 4. Distribution of cropland patches in relation to the USLE LS factor. (a) Histogram showing the distribution of cropland patches in relation to the LS factor during the years 1987,
2003 and simulated 2030. (b) LS factor for the entire study area.
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soil erosion rates. In the year 1987 it is observed that croplands were
predominantly concentrated in areaswith low LSvalues (between0 and
10), with the highest number of patches having LS between 0 and 1.
Between 1987 and 2003 new croplands also developed in areas with
low LS. In other words, agricultural patches established in the last
decades were mainly settled in areas with favourable topography.
This pattern was reinforced after 1987, when the availability of space in
the hills was scarce and the agriculture started expanding to flat areas
along the foothills. In the agricultural expansion simulated for 2030, a
slight increase in cropland patches has occurred in areas with LS
between 1 and 10; however, the most significant increase has occurred
again in areas with LS between 0 and 1 (Fig. 4a).

The soil erodibility factor in the study area varied from 0.0139 to
0.0307, allowing the distinction of eight different classes, arbitrarily
named here with letters A to H (Table 2). Because soil erodibility
figures may vary according to the method used for calculations, the
results were analysed only in a comparative way. The spatio-temporal
distribution of croplands in relation to the soil erodibility is shown in
Fig. 5. In 1987 and 2003 agricultural areas were established mainly in
soils with medium erodibility, namely soils B, C and D. The simulated
agricultural expansion for 2030 was also higher in these soils. The
low occurrence of agricultural activities in soils with high erosivity
(G and H) is explained firstly by the small area occupied by these soils
and secondly by the fact that such soils, together with climatic
variables, create unfavourable conditions for agricultural practices.
Therefore, the results indicate that agricultural activities are unlikely
to expand into areas with higher soil erodibility.
Table 2
Granulometry, soil erodibility factor and classes attributed for each soil found in the
study area.

ID Sd (%) Si (%) Cl (%) C (%) K factor Class

KE289 61 2 37 0.63 0.0139 A
KE251 74 8 18 0.70 0.0205 B
KE244 30 10 60 1.60 0.0205
KE248 58 10 32 0.80 0.0228 C
KE288 50 13 37 0.69 0.0255 D
KE83 61 26 13 6.45 0.0255
KE82 54 26 20 5.90 0.0255
KE79 63 16 21 0.66 0.0273 E
KE56 60 19 21 0.87 0.0283 F
KE226 50 20 30 1.00 0.0283
KE231 20 30 50 3.00 0.0302 G
KE165 50 20 30 0.20 0.0307 H

Where: ID=soil identification number attributed in the Soil and Terrain Database for
Kenya (KENSOTER); Sd=content of sand (%); Si=content of silt (%); Cl=content of
clay (%); C=content of organic carbon (%); Class=soil class arbitrarily attributed
considering the USLE K factor.
The monthly rainfall erosivity averages for the study area, estimated
using the synthetic rainfall datasets, are shown in Fig. 6. The erosivity
values obtained in the SyA2 scenario resulted in the most evident
differences in comparison with the Sy scenario. In January, March,
May and December the changes in precipitation resulted in a clear,
but slight, decrease in rainfall erosivity. The erosivity reduction during
these months varied from 4 to 120 MJ mm ha−1 h−1 month−1. On
the other hand, still for the SyA2 scenario, a large increase was ob-
served in April (280 MJ mm ha−1 h−1 month−1) and November (260
MJ mm ha−1 h−1 month−1).

For the SyB1 scenario, the increases in rainfall erosivity during
April and November were lower, approximately 217 and 40
MJ mm ha−1 h−1 month−1, respectively. A slight decrease was also
observed during March, May and December, but in contrast with the
SyA2 scenario, the erosivity during January was kept almost constant,
with a minor increase of 27 MJ mm ha−1 h−1 month−1. The SyA1B
was the most conservative scenario, although clear changes are still
present. It showed the highest erosivity increases during January
and December, while it confirmed the tendency of a decrease in
erosivity during March and May.

In general, it is plausible to assert that the climate changes simulated
for the study area will likely decrease rainfall erosivity during March
andMay, due to a slight reduction in precipitation rates in these months.
However, the model indicates the possibility of an increase, of much
higher magnitudes, during April and November. The disagreements
between the simulated scenarios in January and December indicate large
uncertainties during these months. For June, July, August and September
rainfall erosivity values are likely to continue to be very low.

The USLE R factors calculated for the study area are displayed in Fig. 7.
Fig. 7e,f illustrates the spatial profiles of the rainfall erosivity
along two transects (A′–B′ and C′–D′). For all simulated scenarios it is
noted that lowor no change occurs in the lowlands (roughly 500 mabove
sea level). The changes, however, start to be more evident along
areas higher than 1000 m a.s.l., where precipitation rates are histor-
ically higher. In particular for the SyA2 scenario, changes are very
high above 1500 m a.s.l., reaching absolute differences up to
1500 MJ mm ha−1 h−1 year−1 when compared with the Sy scenario.
The SyB1 scenario follows the same profile in a lower magnitude,
however, resulting in erosivity increases up to 600 MJ mm ha−1 h−1

year−1. In contrast, the SyA1B scenario did not result inmarked erosivity
increases and in some areas of the southwestern study area slight
decreases were observed up to 60 MJ mm ha−1 h−1 year−1. The highest
increases in this scenario reached approximately 200 MJ mm ha−1 h−1

year−1 in the hills in the northeastern study area.
Fig. 8 shows the differences observed in the soil erosion potential

calculated for the climate change scenarios (SyA1B, SyA1 and SyB1)
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Fig. 5. Spatio-temporal distribution of croplands in relation to the soil erodibility. (a) Histogram showing the distribution of cropland patches in relation to the soil erodibility during
the years 1987, 2003 and simulated 2030. (b) Spatial distribution of the soil erodibility factor in the study area.

285E.E. Maeda et al. / Geomorphology 123 (2010) 279–289
and the scenario simulating the same characteristics as in the
historical datasets (Sy). The maps at the top part of the figure show
the absolute differences. In this case, given that the erosion model is
not calibrated, just a qualitative analysis is performed. A numerical
assessment is carried out for the maps located at the bottom part
of the figure, which show the percentage changes in the soil erosion
potential.

It is interesting to note that completely different patterns are
observed in the absolute and percentage changes. The percentage
changes correspond strongly to altitude, because in lowlands, where
precipitation volumes are lower, even small changes in precipitation
can lead to high percentage differences in rainfall erosivity. However,
in absolute values such differences are much smaller when compared
with erosivity variation in the highland with much higher precipita-
tion rates. The percentage changes ranged from −3 to 14%. The
negative values were observed only for the SyA1B scenario, evidently
in the same regions where the rainfall erosivity was reduced.
The patterns observed in the absolute changes are closely driven
by the LS factor. This characteristic is driven by the fact that the LS
factor range of values within the study area is relatively wide, and
small changes in the R factor are more easily noticed in regions with
higher LS values.

5. Discussion

Although early agricultural activities in the Taita Hills were
initially settled in areas with higher precipitation rates (Pellikka
Fig. 6. Monthly distribution of the rainfall erosivity obtained using the synthetic
precipitation datasets.
et al., 2009), the results demonstrate that croplands were arranged by
producers in areas with lower erosion risk. Namely, croplands were
historically placed in areas with moderate slopes and favourable soils.
It could then be feasible to expect that agricultural expansion pressure
would drive rural activities to areas with higher erosion risk.
However, such hypothesis is refuted based on the presented results.
As shown in the LUCC simulation, croplands are likely expanding to
the lowlands, where the topography is comparatively smooth and
precipitation rates were historically low. Nevertheless, agricultural
expansion will inevitably result in increased soil erosion due to
changes in vegetation cover, as it is evidenced by increases in the USLE
C factor. Such effect of LUCC on soil erosion has been demonstrated in
numerous studies (e.g. Maeda et al., 2008; Schiettecatte et al., 2008;
García-Ruiz, 2010).

The average R factor for the study area was approximately
3040 MJ mm ha−1 h−1 year−1 for the Sy scenario, which simulates
the observed historical precipitation variability. This result is
consistent with figures obtained in other semi-arid regions. For
instance, Da Silva (2004) found that erosivity varied from 2000 to
4000 MJ mm ha−1 h−1 year−1 in semi-arid regions in north-eastern
Brazil. However, the present results show that in regions with high
topographic heterogeneity, such as the Taita Hills, it is crucial to
consider local variations at detailed spatial scales. In this case, the
R factor in the study area varied from 160 MJ mm ha−1 h−1 year−1

in lowlands to approximately 6000 MJ mm ha−1 h−1 year−1 in the
highlands. The global average also masks important variations
brought by potential climate changes. For instance, while the absolute
difference between the R factor averages for the Sy and SyA2 scenarios
was around 250 MJ mm ha−1 h−1 year−1, local changes reached
1500 MJ mm ha−1 h−1 year−1 in some regions in the highlands.

Additionally to the importance of spatial variability at local scales,
understanding seasonal variations was shown to be essential to
delineate appropriate strategies and cope with climate changes. The
importance of seasonal analysis on rainfall erosivity has already been
demonstrated in previous studies. For instance, to evaluate changes in
rainfall erosivity in southern Italy, Diodato and Bellocchi (2009)
demonstrated that soil erosion risk tends to rise predominantly
between April and November, as a consequence of increasing climate
erosive hazard. Munka et al. (2007) studied the variation in rainfall
erosivity in Uruguay between 1931 and 2000, evidencing that spatial
aspects of erosivity changes are closely dependent on seasonal
variations.

In the present study, the most critical rainfall erosivities occurred
during April and November. It is interesting to note that the most
aggressive climate change scenario during these months (SyA2)
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Fig. 7.Maps showing the spatial distribution of the USLE R factor in the study area. (a) Sy scenario; (b) SyA2 scenario; (c) SyB1 scenario; (d) SyA1B scenario; (e) spatial profile of the
R factor along the transect A′–B′ and (f) spatial profile of the R factor along the transect C′–D′.
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retrieved the highest decreases in erosivity during December and
January. On the other hand, the most conservative SyA1B scenario
resulted in the lowest annual average increase (0.7%) and retrieved
the highest increases also during December and January (25% and
13%, respectively).

From the practical point of view, it is important to analyse these
changes together with other attributes that are directly associated with
the soil susceptibility to rainfall erosivity. For instance, the vegetation
cover in agricultural areas, which can protect the soil against the impact
of rainfall, varies significantly during theyear. In general the seeding and
harvest seasons are themost critical, since during these periods the soil
is not protected by any vegetation cover. According to Kenya's Ministry
of Agriculture, the periods from February to March and from June
to October are typical for harvesting and seeding in the Taita Hills
(Fig. 9b,c). This information is confirmed by the Normalized Difference
Vegetation Index (NDVI) temporal profile extracted from 50 random
points in the agricultural areas from 2001 to 2008 using satellite images
from the MODIS/Terra sensor (Fig. 9a; Maeda, 2009). NDVI is closely
related to crops' phenology and biomass production.

Evidently, the agricultural calendar is adjusted according to
historical rainfall pattern. Hence, the months with higher rainfall
usually coincide with periods of maximum vegetation vigour, and the
months of lower rainfall with the seeding and harvest seasons. In
the present study, no significant increases in rainfall erosivity were
observed in the climate change scenarios during the months when
harvest and seeding take place. The main concern from this point of
view is the decreases in rainfall volume observed in March and May,
which will extend the dry seasons in the Taita Hills and potentially
affect the agricultural calendar. This fact may obligate producers to
move the seeding season to months with higher precipitation and,
consequently, higher erosivity.

Changes in erosion control practices (P factor) were not consid-
ered in the present study. However, previous studies have shown that
appropriate land management can significantly decrease soil erosion.
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Fig. 8. Absolute and percent changes in the soil erosion potential.
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For instance, studying soil erosion risk scenarios in Calabria, southern
Italy, Terranova et al. (2009) showed that erosion control practices
can cause a significant reduction of the erosion rate from roughly 30 to
12.3 Mg ha−1 year−1. Feng et al. (2010) demonstrated that soil
conservation measures taken by the Chinese government (Grain-
for-Green project) significantly decreased soil erosion in the Loess
Plateau between the years 1990 and 2005. Hence, further analysis
must be carried out to evaluate the potential of using alternative
erosion control practices in the Taita Hills aiming at the mitigation of
erosivity increases caused by climate change.

Although it was not possible to assess the influence of the soil map
spatial resolution for this specific study case, the KENSOTER datasets
Fig. 9. Phenology in croplands and agricultural calendar in the study area. (a) NDVI
temporal profile from cropland areas obtained using satellite images from the MODIS/
Terra sensor from 2001 to 2008 (after Maeda, 2009). (b) Maize seeding calendar in the
Taita Hills. (c) Maize harvest calendar in the Taita Hills.
After Jaetzold and Schmidt, 1983.
have been successfully applied in previous studies in Kenya. Namely,
these data have recently been used for the assessment of soil carbon
stocks and change in Kenya (Milne et al., 2007). Furthermore, Levick
et al. (2004) evaluated the impacts of different soil maps' spatial
scales on the outputs of a hydrologic modelling tool. By comparing
maps with scales of 1:15,000, 1:250,000 and 1:5,000,000, the authors
concluded that results obtained with the coarser scale soil map were
adequate for estimating surface runoff, producing results comparable
to the map with the higher resolution. Nevertheless, it is perhaps
obvious that, in considering the specific case of soil erosion studies,
the effects of different soil map scales may be more noticeable.

The spatial resolution (20 m) and vertical accuracy (± 8 m) of the
DEM used in this study are consistent with previous studies and
considered adequate for this kind of assessments. According to Rojas
et al. (2008), in general, very good modelling results are obtained at
grid sizes between 30 and 90 m. Nevertheless, Verstraeten (2006)
warns that coarser resolution DEMs may reduce the average erosion
rate by smoothing steep topography and, in these cases, the
calibration coefficients of models need to be adjusted in order to
compensate for the differences.

Concerning the uncertainties involved in themodelling framework
applied in this research, two main sources can be highlighted. Firstly,
the agricultural expansion rates used to simulate the LUCC scenarios
did not take into account changes in socio-economic aspects, which
may increase or decrease the expansion rates. However, although
LUCC rates may vary over time, it is still reasonable to expect that the
calibrated model is effective in indicating the areas with a higher
probability of change. The other main source of uncertainty concerns
the error accumulation in the construction of the synthetic precipi-
tation datasets. Besides the uncertainties intrinsic to the scenarios
simulated by the GCM, which includes uncertainties on chemical,
physical, and socio-economic aspects (Kerr, 2001), the simplified
approach used in this study to represent the climate variations at a
higher spatial scale incorporates additional uncertainties into the
scenarios. Nevertheless, it is worth emphasizing that the importance
of this kind of study is not to give a precise picture of the future but to
provide scientists and policy makers with a comprehensive under-
standing of the possible future scenarios.
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6. Conclusions

Changes in precipitation patterns inevitably affect soil erosion by
changing the amount of energy available in rainfall to detach and
carry sediments. It is also clear, based on numerous scientific studies,
that LUCC caused by agricultural expansion can accelerate soil loss.
The establishment of feasible and fast strategies to cope with such
changes is an essential step in the direction of soil conservation. This
study has demonstrated that by understanding the interactions of
climatic variations, LUCC and landscape attributes, it is possible to
evaluate the impacts of environmental changes and indicate priority
regions from the soil conservation point of view.

The results of the LUCC simulation indicate that agricultural
expansion in the Taita Hills is driving into areas with less pronounced
slopes, lower precipitation and, consequently, lower soil erosion
potential. Nevertheless, if current trends persist, it is expected that
agricultural areas will occupy 60% of the study area by 2030. These
changes will increase the USLE C factor in up to 8.8%, resulting in
accelerated soil erosion.

A large contrast was observed among the different climate scenarios
described in the synthetic precipitation datasets generated for this
study. Despite this fact, important tendencies can be clearly identified.
By the year 2030, rainfall erosivity is likely to increase during April and
November. All scenarios converge to a slight erosivity decrease
tendency during March and May. The highest uncertainties were
observed in January and December, when some scenarios indicate a
small reduction in erosivity while some indicate an increase.

Accounting for LUCC and climate changes in an integratedmanner,
we can conclude that the highlands of the Taita Hills must be
prioritized for soil conservation policies during the next 20 years.
Although new croplands are likely to be settled in lowlands over the
next decades, increases in precipitation volumes are expected to be
higher in the highlands. Moreover, it was demonstrated that in areas
with elevated LS factor values, typically in the highlands, increases in
rainfall will have significantly higher impacts on soil erosion potential.
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