Equations and how to
manipulate them

3.1 Introduction

The last chapter introduced many of the more common mathematical func-
tions. It is essential that you know how to manipulate expressions containing
combinations of such relationships. Sometimes this will be done in order to
simplify the expressions. Sometimes it will be necessary to combine several
expressions to produce a new one. Very often the form of an expression is
inappropriate for a particular task. Whatever the reason, this is the chapter
that tells you how to go about combining, simplifying and rearranging math-
ematical expressions.

Some of the equations that you will see in this chapter are unfamiliar geo-
physical or geochemical expressions. However, these will not be derived here
because this is not a geophysics or geochemistry text. Enough will be said to
allow you to understand the context of the problem.

3.2 Rearranging simple equations

It is very obvious, but it is vitally important to appreciate, that an equation is
a mathematical statement in which two expressions equal one another. Look
again at the lake bed sediment example from Chapter 1:

Age = k x Depth (1.1}

The left-hand expression is very simple, it contains ‘age’. The right-hand side
is also simple and is the product of £ and ‘Depth’. The point is that the left-
and right-hand sides are stated to be equal and this is what makes 1.1 an
equation. The reason that I labour this point is that the golden and unbreak-
able rule when manipulating equations is that, whatever you do, the left- and
right-hand sides must remain equal to one another. This is simply achieved.
Whenever you manipulate one side of an equation, you must perform exactly
the same operation on the other side. Thus, if you add a constant to one side,
you must add the same constant to the other side as well; if you double one
side, you must double the other; and so on. For example, given Eqn. 1.1, the
following expressions are also true:

Age+ 3 =(kxDepth) +3 (i.e.add 3 to both sides);
2 x Age = 2k x Depth (i.e. double both sides);
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VAge = V(k x Depth) (i.e. square root both sides);
log(Age) = log(k x Depth) (i.e. take logarithms of both sides).

By combining suitable operations on the two.sides of an equation, it is pos-
sible to rearrange an equation into another form. As an example, suppose
that instead of an equation which tells us the age if we know the depth (i.e.
Eqn. 1.1), we actually need an equation which tells us the depth we would
need to dig, to reach sediments of a specified age. How do we do this? We
must manipulate Eqn. 1.1 to give a new equation which has ‘Depth =’ on the
left-hand side rather than ‘Age =". The problem is that ‘Depth’ only appears
in combination with °#’; it does not stand on its own. We must, somehow,
remove ‘k’. Now, if ‘& x Depth’ is divided by ‘&’ then we are left with ‘Depth’.
However, if we do this to the right-hand side of Eqn. 1.1 we must also do this
to the left-hand side. This gives

Age/k = Depth
which can obviously be rewritten as
Depth = Age/k . (3.1)

which is the expression that we wanted.

The above example is very simple and could probably have been done
almost automatically by many readers of this book. However, it is important
that you read very carefully through the logic of the above example.

Question 3.1 Manipulate Eqn. 1.1 to give an expression for k. If, at a
depth of 3 m, the age is 3000 years, use your result to determine the sedi-
mentation constant. (Assuming, of course, that Eqn. 1.1 is valid for the
lake bed in question.)

As another example, what about manipulating the slightly more complex
lake sediment expression from Chapter 2,

Age = (k x Depth) + Age of top (2.1)

to give an expression for depth? The problem is that there is another term on
the right-hand side to remove. Should we remove k& first or ‘Age of top’? In
fact, it does not really matter. If we try to remove ‘k’, by dividing by & as
before, the result is

Agelk = Depth + (Age of top/k) (3.2)

Note that both ‘Age’ and ‘Age of top’ now appear over k since all terms must
be divided by k. An expression for the depth is then found by subtracting the
second term on the right-hand side to give, after swapping left and right sides

around,
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Depth = (Age/k) — (Age of top/k) (3.3)
Alternatively, we could have begun by attempting to remove ‘Age of fop’
from the right-hand side of Eqn. 2.1, Subtracting ‘Age of top’ from Eqn, 2.1
gives

Age ~ Age of top = k x Depth (3.4)
Dividing this by & then yields

Depth = (Age — Age of top)/k (3.5)
which is the same as Eqn. 3.3 although written in a slightly different form. (If

these look totally different to you, do not worry as it will be explained later in
this chapter.)

Question 3.2 Starting with Eqn. 2.1, derive an expression for the age of
sediments at the surface of a dried-out lake bed. If the sedimentation con-
stant was 5000 y m-1 and, at a depth of 10 m, the age was 60 000 years,
determine the age of the surface sediments, this time assuming that
Eqn. 2.1 is valid.

Yet another example: how do we know the mass of the Earth? The answer is
that we know from the strength of gravity at the Earth’s surface. The strength
of gravity is measured by the acceleration it causes to a falling body; a strong
gravitational pull will accelerate a falling apple, say, more than a weak gravi-
tational pull. Physicists tell us that this gravitational acceleration, g, is related
to the Earth’s mass, M, by the equation

g=GM/n? (3.6)

where G is a known physical constant and r is the Earth’s radius. To use
this equation to estimate the Earth’s mass it must be rearranged into an
expression for M. Now, G and r2 can be removed from the right-hand side
by dividing by G and multiplying by 2. Thus, the left-hand side must also be
divided by G and multiplied by 72 to give

griG=M
or, after swapping around
M=grG (3.7)

The values of all the symbols on the right-hand side of Eqn. 3.7 are known.
The gravitational acceleration, g, and the gravitational constant G have both
been measured very accurately in physicists’ laboratories, whilst the radius of
the Earth, 7, has been known for more than 400 years (in fact, some ancient
Greeks had a pretty good idea too!). The values are

r
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£=9.81 ms-1

r=6370km=6.37x 106 m

G=6.672 x 10-11 m3 kg-1s-2

Do not worry too much about the units of-these numbers but it is important
that consistent units are used (Chapter 1), so I have converted the Earth’s
radius into metres since both g and G are given in units which include metres.
Substituting these numbers into Eqn. 3.7 gives

M =9.81x(6.37 x 106)2/(6.672 x 10-11)
=(9.81 x 6.372/6.672) x 1023
=59.7 x 1023
=5.97x 1024 kg
which is about six thousand million million million tonnes. Not bad for a

small planet!

3.3 Combining and simplifying equations

If we know the mass of the Earth and can also find its volume, the Eart'h’s
average density could be calculated. The volume of the Earth can be e.stlm—
ated using the standard formula for the volume, V, of a sphere of radius r.

This is
V=4rr3/3 (3.8)

Using the radius of the Earth given above and & = 3.142 gives a volume of

V=4x3.142 x (6.37 x 106)3/3
=(4 x 3.142 x 6.373/3) x 1018
=1083 x 1018
=1.083 x 1021 m3

The density {usually denoted by rho, p) is related to mass and volume by

p=MIV (3.9)

Thus, using the mass and volume already found, the average density of the
Earth is given by
p = (5.97 x 1024)/(1.083 x 1021)

={5.97/1.08) x 103

=5.51x103

= 5510 kg m-3
and this is more than five times the density of water (which is around
1000 kg m-3).
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The above derivation was a little tortuous. It is possible to combine the
three expresgions (Eqns. 3.7-3.9) into a single expression for density. This
means less numerical calculation is necessary and fewer errors will be made.
Equation 3.9 tells us to divide mass by volume to give density. The mass is

given by Eqn. 3.7 whilst the volume is given by Eqn. 3.8. Therefore we can
immediately write down

p=M/V=Eqn.3.7/Eqn. 3.8
_ &G
4nr3/3 10

In other words, it is always possible to replace an expression (e.g. M) by
another equal expression {in this case gr%/G). Since the initial and replace-
ment expressions are equal, the right-hand side of the equation does not
change its value and the equation remains true. We now have an expression
for density which could be evaluated by substituting the known values for &7
j«md G. However, Eqn. 3.10 looks a bit daunting. Evaluating it is not any eas-
ler than separately evaluating M and V as before. Fortunately, it is possible to
simplify. First, we multiply both the top of the right-hand side and the bottom
of the right-hand side by G. Since we are multiplying the whole expression
then by G/G (which equals 1.0), this has no effect upon the left-hand side.
The result is

_ GlgriG)
Glanr3/3)

__g&?
4Gnr3/3 (3.11)

since the two Gs on the top cancel each other. Now we can do a similar trick
to remove the division by 3. Multiplying top and bottom by 3 yields

_ Jer?
4Gnr3 (3.12)

Finally, by noting that 3 = r2r and cancelling, this expression can be further
reduced to

_ 3
4Gnr2r

_ 3
4Gnr (3.13)

This is much simpler to use than Eqn. 3.10. Let’s just check that it gives the
right result:

.
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p =3g/(4Gnr) :
=3x9.81/(4x 6.672 x 10-11 x 3.142 x 6.37 x 10¢)
=[3x9.81/(4x6.672 x3.142 x 6.37)} x 105 .
=0.0551 x 10S o
=5510 kg m3 .
as before. Note that this result is about twice the density of typical rocks found
at the Earth’s surface. We can therefore conclude that the deep Earth must be
much denser than the near surface for the average to come out so high.

Question 3.3 Prove thatif
w = 3y/(4z) and

x = 2y/(42) then

wix=1.5

These, then, are the basic tools for equation manipulation:

(i) you can add, multiply, divide, double, halve, subtract or perform any
other operation you like, provided that you do exactly the same to both sides
of an equation;

(ii) you can always replace an expression by any other expression which is
equal toit.

3.4 Manipulating expressions containing brackets

An important mathematical skill is the ability to use brackets effectively.
Sometimes an expression can be made a great deal easier to understand, and
easier to use, if brackets are added or removed. Brackets will normally be
added into an equation by a procedure called factorization, whilst the reverse
operation which removes brackets is achieved by multiplying out.

We’ll start with a simple problem which is analogous to the algebraic
problem of multiplying out brackets. Imagine a region which is known to
contain 2 tonnes of recoverable gold and 10 tonnes of recoverable silver in
every square kilometre. How much gold and silver could be recovered from
2 km2? Obviously it is 4 tonnes of gold and 20 tonnes of silver. In other
words, you multiply the reserves in 1 km? by the number of km2.

The following problem in bracket multiplication is identical to the
problem above

2 x (2x + 10y) = 4x + 20y (3.14)

The left-hand side says that there are two lots of (2x + 10y) and the right-
hand side says that chis is the same as 4x and 20y. If you think of x as gold and
y as silver you should see the equivalence of the two problems. In practice, all
you do is multiply each of the terms inside the bracket by the number outside.
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This rather easy example actually contains all the mathematics you need to
tackle any other cases. For example,

2.3(x + 2y + 4z2) =23x+4.6y+9.27 (3.15)

is Calcylated exactly the same way as before. Simply multiply each of the
terms inside the bracket by the number outside. If the number outside isa
symbol rather than a number this leads to examples such as

a(x +2y + 4z) = ax + 2ay + 4az (3.16)

which is no different from the earlier examples; simply multiply each term in
the brackets by 4. A final difficulty is if the number outside the bracket is a
more complex expression such as (7 + 3) giving

(@+3)x+2y+42) =(a+3)x +2(a+3)y +4(a+ 3)z (3.17)

As. you can see, this is still done the same way. However, this time we can take
.thmgs a stage further. Each of the resulting terms in Eqn. 3.17 is anew problem
in multiplying out brackets. For example, the first term on the right-hand side is
(a+3)x=x(a+3)

=ax + 3x (3.18)

The other terms in Eqn. 3.17 can be similarly multiplied out leading to a final
answer of

(a+3)x+2a+3)y+4{a+ 3)z=ax+3x + 2ay + 6y + daz + 122 (3.19)

Question 3.4 Multiply out the brackets in the following examples.
(1) S(x+2y)

(i) S{x +2.2y);

(iii) 5.5(x +2y);

(iv) Sa(x + 2y);

(V) (x = 2y){(x + 2y);

(vi) (x +2y)2

Question 3.5 Earlier in this chapter I'stated that the expression

Depth = (Age/k) - (Age of top/k) (3.3)
was exactly the same as

Depth = (Age - Age of top)/k (3.5)
Verify this by rewriting Eqn. 3.5 in the form

Depth = (1/k)(Age — Age of top)

and multiplying out the bracket.
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Factorization is the reverse process to multiplying out of brackets. For
example, Egn. 3.18 above was

x(a+3)=ax+3x . (3.18)
Factorization is the process of writing this the other way around:
ax +3x=x(a+3) (3.20)

Its main use is for simplifying the appearance of more complex expressions
and relies upon spotting common factors. The trick is to spot that both terms
on the left-hand side of Eqn. 3.20 contain a factor x, i.e. they are both equal
to some quantity multiplied by x (a times x for the first term and three times
x for the second). This x can be taken out as a common factor leaving a + 3
inside the bracket. Another, more difficult, example might be

32xy +6.4xw+2z="? (3.21)

The first two terms have a common factor of 3.2x which can therefore be
written outside a bracket containing y + 2w. Thus, the solution is

32xy +6.4xw +2z2=32x{y + 2wy +2 (3.22)

Note that the third term does not have any factors in common with the first
two and is therefore left alone.

Question 3.6 Factorize 6ax + 3ay "

Factorization can be used to derive an equation for the density of a wet,
porous sandstone. This rock will be partly made from sand grains with a dens-
ity of p, and partly made from water with a density of p,,. Hence, the average
density of the sample will be somewhere between p and p,,.. If the porosity, ¢,
is low, the density will be close to that of the sand grains but if the porosity is
higher, then the average density will be a little closer to that of water. More
mathematically, take a specimen of this sandstone which has a volume V and
mass m. This mass will be made up from the mass of water in the volume plus
the mass of the grains, i.e.

m:mw-f-ms (323)

where m,, and m_are the masses of water and sand respectively. However, the
mass of water is given by the product of the volume of water and the density
of water whilst 7, is similarly given by the grain density times the volume of
grains. Thus, Eqn. 3.23 can be written

m=V,p, + Vp, (3.24)

where V,, and V, are the volumes of water and sand in the sample. The
volume of water is equal to the volume of the sample multiplied by the
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porosity (e.g. porosity equal to 0.5 implies that half the total volume is water,
a porosity of 0.25 implies one-quarter of the total volume is water). Thus

V,=¢V (3.25)
The remaining volume must be sand and therefore

V=V-o¢V (3.26)
Substituting these volumes into Eqn. 3.24 gives

m=¢Vp,, + (V- oV)p, (3.27)
Multiplying out the bracket then leads to

m=¢Vp, + Vp - ¢Vp, (3.28)

Now Viscommon to all the terms on the right-hand side and can therefore be
taken out as a common factor to give

m=V(p pw+ps—¢ps) (3.29)

Finally, dividing by V and performing a further factorization gives the
required average density

p=mlV
=0P.+ P~ 9P
=0¢p, +(1-0lp, (3.30)

Question 3.7 Using Eqn. 3.30, plot a graph of how the density varies as
porosity changes from zero to one. Assume

Py = 1000 kg m-3
p=2500 kg m-3

3.5 ‘Rearranging’ quadratic equations

Chapter 2 introduced a quadratic expression for calculating temperature for
the deeper parts of the Earth. This was in the form

Temperature = (-8.255 x 10-5)22 + 1.05z + 1110 (2.6)

How can this be rearranged to allow calculation of the depth for a given
temperature, e.g. at what depth is the temperature 2000°C? In fact, such a
rearrangement is rather difficult. To solve this problem it is first necessary
to discuss a technique called finding the roots of a quadratic equation.

The roots of a quadratic equation are the values of the variable which make
the quadratic expression equal zero. Figure 3.1 should make this idea clearer.
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Fig- 3.1 The roots of a quadratic equation are the points where the quadratic curve crosses the
horizontal axis. Thus, curve A has no roots, curve B has roots at aboutx=-1.1andx = 1.5,

curve C has one root near x = 1.

The most general way to find these roots is to use the following method. The
roots of the quadratic equation

y=ax2+bx+c¢ (3.31)

are the values of x for which

y=0 (3.32)
or, equivalently, the roots are the values of x satisfying
O=ax2+bx+c¢ (3.33)

From Fig. 3.1 it should be clear that there can be two such values {curve B), or
one (curve C) or none {curve A). The values are given by

_ b *b2 - 4ac

B 24 (3.34)

where + means “either add or subtract’. For example, curve B in Fig. 3.1 had

the equation

y=3x2-x~-5 (3.35)

ie.a=3,b=-1,c=-5. o
Note that both & and ¢ are negative in this example. Substituting these
values into Eqn. 3.34 gives
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Fig. 3.2 Atwhardepth is the temperature 2000°C?

x=[1+V(1+4x3x5))/2x3]
=[1+61)/6
={1+V61)/6 or =[1 -V61]/6
=1470r=-1.14 (3.36)

which are, indeed, the points where curve B crosses the horizontal axis in
Fig. 3.1. If, on the other hand, we look at curve A, this has the equation

y=x2+x+3 (3.37)
ie.a=1,b=1,c=3.

Substituting these values into Eqn. 3.34 gives
x=[-1+V(1-12))2

=[-1£v-11)2 (3.38)

but V-11 has no solution (because you cannot find the square root of a negat-
ive number) and therefore there are no roots (which is what Fig. 3.1 shows).

Question 3.8 Find the roots for curve C where
y=-x2+2x-1

We can now attempt the problem of how to find the depth for a particular
temperature. Take the case where we wish to know the depth at which the
temperature is 2000°C (Fig. 3.2). Substituting this temperature into Eqn. 2.6
gives

2000 = (-8.255 x 10-5)22 + 1.05z + 1110 (3.39)
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which is not quite in the form that we need. We have a method for solving
equations like 3.33 where the quadratic expression equals zero. Here we
have an equation which equals 2000. However, this is simply remedied by
subtracting 2000 from both sides to give '

0=(-8.255x10-5)22+1.052-8%0 (3.40)
which is equivalent to Eqn. 3.33 with values for 2, band ¢ of
a=-8.255x10-5,b = 1.05,c =-890.

Substituting these into Eqn. 3.34 (and remembering that z is the variable in
Eqn. 2.6 not x) gives

1= ~1.05 + 4/1.052 — (4 x 8.255 x 10-5 x 890)

41
-2x8.255x10-5 341

which has solutions of z = 913 km and z = 11 806 km. There are two depths
because at a depth of 11 806 km, you are about 913 km from the surface on
the far side of the Earth.

[ Question 3.9 Find the depths at which temperature reaches 3000°C.

3.6 Further questions
3.10 The density, p, of an air-filted porous rock is given by
p=p 1 - (V,/V)]

where p, is the density of the grains making up the rock, V, is the volume
occupied by pore space and V is the total volume. By combining this with
Eqn. 3.9 prove that the grain density is given by

P = MI(V = V)

where M is the mass of the rock sample. Hence, calculate both the average
density and the grain density of a sample with a volume of 0.11 m3, a mass of
205 kg and a porosity of 0.32.

3.11 Stokes’ law states that the velocity at which a spherical particle sus-
pended in a fluid settles to the bottom is given by

2(p, — plgr?
v=—F——
Im
where v is the velocity of descent, p, and p; are the densities of particle and
fluid, respectively, g is the acceleration due to gravity, is the particle radius
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andn is a property of the fluid known as its viscosity. Assuming that grains of
different sizes have identical densities, show that the ratio of the settling
velocities for two different grain sizes is

2
Y n
Yy n

where v and v, are the velocities for grains of radius 7y and r,, respectively. If
a grain of radius 0.1 mm, suspended in a lake, takes 10 days to settle to the
lake bottom, how long would it take a grain of radius 1 mm?

3.12 (i) Rearrange

O=ax2+bx+c¢

into an equation for b.
(ii) Use your answer from (i) to verify chat

2 —4ac = a2x? + (cAx2?) - 2ac
(iii) Verify that the answer to (ii) could be factorized to yield
b2~ 4dac = [ax — (c/x)]?

(Hint: It is easiest to do this by multiplying out the above expression.)
(iv) Use the above answers to verify that one of the roots of a quadratic
expression is given by

b+ b2 — 44c

2a

3.13 Check your answers to questions 3.8 and 3.9 by using spreadsheet
Roots.xls.

More advanced equation
manipulation

4.1 Introduction

In the last chapter you were introduced to methods for manipulating simple
equations. In this chapter we will look at a few, more advanced, techniques
for equation manipulation. In particular, I shall discuss manipulation of equa-
tions containing exponentials and logarithms. I will also look at the topic of
simultaneous equations in which several equations must be manipulated at
the same time in order to solve a problem.

This chapter also introduces techniques for checking equations for errors.
They may have been wrong in the first place (e.g. due to a printing error) or
you may have made mistakes during your manipulations. Either way, it is
useful to be able to check that equations are reasonable.

4.2 Expressions involving exponentials and logarithms
In Chapter 2 we looked at expressions involving exponentials such as
0 =0y e/t (217

for variation in porosity, ¢, with depth, z. We also looked at logarithms and it
was stated that these could be used to recast the graph of an exponential
expression into the form of a straight line. This procedure is essential if, for
example, you wish to rewrite Eqn. 2.17 to give the depth at which a particular
porosity occurs. A little further revision on the properties of logarithms is first
needed. The point to remember about logarithms is that they are simply the
reverse operation to raising to a power (Section 2.8). From this, it follows that

logy(yx) =x (41)

where y is any base for the logarithm.

For example, 102 = 100 and log{100) = 2, i.e., log(102) = 2. Another useful
result is that
log{ab) = log(a) + log(b) (4.2)

where again the log can be to any base. In other words, the logarithm of any
two numbers multiplied together is equal to the sum of the logarithms of the

numbers. For example,

55
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log(12) = log(3) + log(4)  (since 3 x 4 = 12)

and also

log(12) = log(6) + log(2) (since2 x 6 =12)

oreven

log(12) = log(10) + log(1.2) (since 10 x 1.2 = 12)

Equation 4.2 can be generalized into

log(abc . . . ) = logla) + log(b) + log(c) +. . . (4.3)

i.e. the logarithm of a series of numbers multiplied together equals the sum of
their logarithms. For example,

In(2 x 3 x4.712 x f) = In(2) + In(3) + In(4.712) + In(f)

A special case of Eqn. 4.3 is the logarithm of a number raised to a power. In
this case we get

log(x~) = log(x) + log(x) + log(x) + n terms like this
= n log(x) (4.4)

Finally, subtraction of two logarithms is equivalent to division of the argu-
ments (the argument of log(b) is b, the argument of In(f} is fand so on). Thus

log(alb) = log(a) - log(b) (4.5)
and
In(a/b) = In{a) — In(b) (4.6)

These rules allow the following transformation of equations such as 2.17.
Starting with

¢ =y A (2.17)
and taking the natural logarithm of both sides gives

In{¢) = In(, e-2/A) (4.7)
Now, using the rule about logarithms of products (Eqn. 4.3), leads to

In{9) = In(¢y) + In(e=/3) (4.8)
Finally, Eqn. 4.1 produces

In(¢) = In(¢) - 2/A (4.9)

which implies that a graph of In(¢) against z is a straight line of gradient
(—1/1) and intercept In(¢,) (Fig. 4.1).
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Depth (km)
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intercept = In(dg)

In(¢)

Gradient = -1/

Fig. 4.1 A graph of In(porosity) against depth assuming Eqn. 2.17, an initial porosity of 0.7 and
A=2km.

We now have an expression which can be rearranged for depth. First add
2/hto both sides of Eqn. 4.9 to give

2/ + In(0) = In(dyp) (4.10)
Then subtract In(¢)

2\ = In(0g) - In(9) (4.11)
Finally, multiply by A

2= A[In(¢y) — In(9)] (4.12)
Alternatively (using Eqn. 4.6}, this can be expressed as

2="A1n(04/0) (4.13)

Thus, Eqn. 4.12 or 4.13 can now be used to obtain the depth at which a
specific porosity occurs. For example, for A =2 kmand ¢, = 0.7 a porosity of
0.35 would occur at a depth of

z =2 In(0.7/0.35)
=21In(2)
=2x0.693
=1.39 km

A geochemical example may serve to reinforce these ideas. Radioactive dat-
ing is based upon the fact that the amount of a radioactive material decreases
with time. Thus, if you know how much of the radioactive substance is



