Common relationships between
geological variables

2.1 Introduction

This chapter is about relationships between variables. In the last chapter, the
depth and age of sediments in a lake were related by the simple expression

Age = k x Depth (1.1)

Many other geological variables are also related to each other. For example,
the internal temperature of the Earth is related to depth (it gets hotter as you
get deeper) and the strength of a rock is related to the pressure applied to it
(rocks usually become stronger when compressed). However, the precise
nature of the relationship varies from one example to another. For simple
cases, expressions similar to Eqn. 1.1 will do. In other cases the relationships
are more complex.

In Eqn. 1.1 above, age is a function of depth. This implies that any given
depth produces a unique value for the age. Any type of relationship in which
the value of one variable produces a single, unique, value for another is called
a function and this term will be met with repeatedly throughout the remain-
der of this book.

This chapter is probably the most important in the entire book. It is only
the fact that we can use mathematical expressions to relate different geo-
logical quantities that makes mathematics useful in geology. In practice, the
true relationships between quantities such as depth and temperature are usu-
ally so complex that they must be approximated by much simpler ones. This
chapter will introduce you to some of the most common of these simple rela-
tionships starting with the most simple and common of all, the straight line
function.

2.2 The straight line

The straight line equation is possibly the most important mathematical
expression found in geology since a very large range of geological problems
can be approximated using straight line functions.

Returning to the lake sediment problem of Chapter 1, imagine that the
lake completely dried out 1 My ago and that there has been no sedimentation
in the lake since that time. Under these circumstances all the sediments are
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Table 2.1 Age of sediments in a brief

Depth (m) Age (My) out take calculated using Eqn. 2.2.
0 1
20 1.01
40 1.02
60 1.03
80 1.04
100 1.0S5

1 My older than we might otherwise think, i.c. the top sediments are 1 My old
rather than recent and sediments at a depth of 1 m are, say, 1 000 500 years
old rather than 500 years old. An equation to describe the age of the sedi-
ments would now be

Age = (k x Depth) + Age of top (2.1)

since, in this expression, each age calculated from ‘k x Depth’ has the ‘Age of
top’ added to it. Thus, if the sedimentation constant k was 500 y/m and the
age of the top sediments is 1 My the sediments have an age of

Age = (500 x Depth) + 1 000 000 (2.2)
Sediments buried at a depth of 100 m would then have an age of

Age = (500 x 100) + 1 000 000
=1 050 000
=1.05 My

Repeating this calculation for a range of depths from 0 to 100 m gives the
values shown in Table 2.1 and plotted in Fig. 2.1.

Question 2.1 Repeat the above calculation for a depth of 50 m.

As you can see, the resultant graph is a straight line. A straight line is
completely specified by just two quantities. Firstly, the point where the line
crosses the vertical axis tells us how high up the line is. Secondly, the steep-
ness of the line. A different straight line will either cross the vertical axis at
another place or it will be less (or more) steep.

The position where the line crosses the vertical axis is called the intercept
and has a value of 1 My in the particular case of Fig. 2.1. Tt is essential, when
determining this intercept, that the vertical axis crosses the horizontal axis at
the point where the depth is zero. If the vertical axis is anywhere else, the age
at which the plotted line crosses the axis will be different (Fig. 2.2). Thus, to
specify ‘how high up’ the straight line is, it would be necessary to give both
the intercept and the location of the vertical axis. To avoid this the intercept is

Y‘!
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Fig. 2.1 Graph of age versus depth data from Table 2.1.
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Fig. 2.2 The intercept should be given for a vertical axis passing through zero on the horizontal
axis. Any other vertical axis will give a different intercept,

always quoted for a vertical axis which passes through the origin of the
horizontal axis.

The second value which characterizes a straight line, the steepness, is called
the gradient of the line. This is simply a measure of how rapidly the ‘height’
increases as we move from left to right along the line. The effect of gradient is
illustrated by Fig. 2.3. Note that both age and depth alter as we go from point
A to point B and that, for a given change in depth; the change in age becomes
greater as the steepness of the line increases. Thus, the steepness can be char-
acterized by the increase in age produced by a given increase in depth. For
simplicity, we can fix the depth increase as being 1 m, i.e. the gradient is
defined as the increase in age produced by drilling into the sediments by an
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Fig. 2.3 Theage and depth alter as we go from point A to point B. However, the age alters more
for the steeper linc given the same change in depth.

additional 1 m. However, the points A and B in Fig. 2.3 are not necessarily
1 m apart so we must modify the observed change in age between points A and
B by dividing it by the distance between them. Thus, the gradient is given by

Gradient = (Change in Age)/(Change in depth) (2.3)

For example, point A is at a depth of 20 m and an age of 1.01 My whilst
point B is at a depth of 80 m and an age of 1.04 My. Thus, the change in
depth is 60 m and the change in age is 0.03 My (= 30 000 years) giving a
gradient of

Gradient = 30 000/60 = 500 y m~!

There are several points to note about this answer. It does not matter which
two points are chosen, the same answer would result if, for example, depths
of 0 and 50 m had been chosen for the points A and B. Secondly, the ‘units’
for the answer of ‘years/metre’ occur because the top line of the calculation
is in years (30 000 years) and the bottom line is in metres (60 m). Hence the
calculation involves years divided by metres giving an answer in years/metre.
This procedure for finding the units of an answer will be covered in more
detail in Chapter 3.

Question 2.2 Calculate the gradient of the straight line in Fig. 2.3 using
the point A again (depth = 20 m, age = 1.01 My) and the point at a depth
of 100 m and age of 1.05 My.

The answer of 500 y m-1 is not only a measure of the steepness of the line.
This gradient tells us that each metre of sediment takes 500 years to accumu-
late (i.e. 500 years per metre). This s, of course, our sedimentation constant.
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Table 2.2 Measured ages and depths for

sediments in a lake bed. Depth (m) Age (years)
0.5 1020
1.3 2376
" 247 5008
4.9 10 203
8.2 15 986
16 000 /
B
12 000
5
£ 8000
[}
o
<
4000 A
0 + + ']
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Fig.2.4 A graph showing the sediment age versus depth data from Table 2.2.

It should now be clear that, for the lake sedimentation example, the inter-
cept on a graph of age against depth tells us the age of the top sediments
whilst the gradient tells us the rate of accumulation. In fact, rather than
obtaining the straight line graph from given values for intercept and gradient,
it is more likely that these quantities will be estimated by fitting a straight line
to a graph of some depth/age data. Consider the age versus depth data shown
in Table 2.2. These figures might, for example, have been obtained by taking
cores from a lake bottom and dating them using the radiocarbon method
(this is a geochemical method for estimating the age of organic remains, the
details of which are beyond the scope of this book). Figure 2.4 shows a graph
of these data together with a ‘best-fit’ straight line which passes very close to
all of the points.

In this example, the intercept value is not significantly different from zero.
Thus, in this lake, sedimentation is continuing at the present day and at the
same rate as in the past. The gradient of the line can be found by assessing
the points A and B shown. The point A lies at a depth of 2 m and an age of
4000 years whilst the point B has a depth of 7 m and an age of 14 000 years.
Thus, the change in depth is 5 m and the change in age is 10 000 years giving
a gradient of
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Gradient = 10 000/5 = 2000 y m-1

i.e. each metre of sediment took 2000 years to accumulate or, equivalently,
the sedimentation constant £ = 2000 y m-1.

Question 2.3 Given the following depth/age data from a dried-up lake
bed, estimate the rate of sedimentation and how long ago the lake dried
out.
Depth (m) Age (years)
6 570 000
10 580 000
18 615 000
20 620 000

It is now time to move from the specific example of lake bottom sedimenta-
tion to more general expressions. If we start with our lake sediment equation,

Age = k x Depth + Age of top (2.1)

this is not a general equation since the terms in Eqn. 2.1 (Le. ‘Age’, ‘k x
Depth’, ‘Age of top’) refer to specific quantities involved in the sedimentation
problem. The simplest way to arrive at a more general expression is to replace
cach of the terms in the equation by new symbols which do not have specific
meanings. Thus we can replace the specific variable ‘Age’ by the general vari-
able y. Similarly, the ‘Depth’ can be replaced by the general variable x and the
constants k and ‘Age of top’ can be replaced by the general constants 72 and c.
This procedure results in a general form for the equation of a straight line of

y=mx+c (2.4)

where y is plotted along the vertical axis and x is plotted along the horizontal
axis. Note that using the new symbols y, m, x and ¢ was an entirely arbitrary
choice. Any other set of symbols could have been chosen. For example, the
equation

o=Py+9d

is also a straight line equation, provided 0. and yare variables and B and 6 are
constants, since it is of the same form as Eqns. 2.1 and 2.4. However, the par-
ticular symbols used in Eqn. 2.4 are traditionally used for the general form of
the equation of a straight line and I have stuck to that convention.

A graph of Eqn. 2.4 is a straight line which has an intercept of c and gradi-
ent of m (Fig. 2.5). In this figure, Ay (pronounced ‘delta y’, this means little bit
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Gradient,
m = AylAx

] \
Intercept, ¢

x{r

Fig. 2.5 The general form of the equation of a straight line, y = mx + c.

of y) is the change in height produced by moving a horizontal distance
Ax along the line. Note that, in the illustrated example, y increases for an
increase in x since the graph slopes up to the right. Thus Ay and Ax are posi-
tive and so is the gradient. On the other hand, if the line sloped downwards to
the right, y would decrease as x increases. Thus, Ay would be negative giving
a negative gradient. As a general rule, lines that increase in height towards the
right have a positive gradient whilst lines that decrease in height have negat-
ive gradients.

Spreadsheet S_line.xls should help to make this idea clearer. This sheet
plots a straight line using Eqn. 2.4. You can alter the value of the gradient, m,
and intercept, ¢, and observe the effect upon the resulting straight line.

The relationship between the general equation for a straight line (Eqn. 2.4)
and specific real cases, should be made clearer by one last example. It is well
known that temperature increases with depth in the Earth and, for depths
of less than around 100 km, it is a good approximation to assume that a
plot of temperature against depth should be a straight line. The intercept of
such a graph is, by definition, the temperature at zero depth, i.e. the surface
temperature. This value will vary considerably from tropical to polar loca-
tions but a typical value might be 10°C. The gradient of the line, i.e. the
rate at which temperature increases with depth, also varies from one location
to another since geologically active areas have very different gradients from
old, stable, continental areas. However, values around 20°C km-! are not
unusual, i.e. the temperature increases by 20°C for an increase in depth of
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1 km. To summarize, temperature plotted against depth gives a straight line
characterized by the local temperature gradient and an intercept equal to the
local surface temperature. A general expression for how temperature varies
with depth at a particular location would therefore be

Temperature = (Gradient X Depth) + Surface temperature 2.5)

(cf.y = mx + c). For the specific case of an intercept of 10°C and a gradient of
20°C km-1 this would yield

Temperature = (20 x Depth) + 10
Thus, at a depth of 40 km the temperature is 810°C.

Question 2.4 Rocks usually increase in strength, T, when compressed.
This strength is defined as the shearing (= sideways) pressure necessary for
a particular rock specimen to break. The standard units of pressure are
pascals. If T increases by m pascals for each additional pascal of normal
pressure (i.e. compressive pressure) and if the strength when not com-
pressed is T,, write an equation for how t varies with normal pressure P.
Sketch a graph of this function.

There are many other examples in geology of the use of straight line func-
tions. However, many geological phenomena are not well represented by
straight lines and more complex expressions must be used. Some of the more
common alternatives are described in the remainder of this chapter.

2.3 Quadratic equations

The linear temperature with depth relationship discussed in the last section
breaks down badly for depths much greater than 100 km. For example, at the
centre of the Earth the depth is approximately 6360 km so that a surface tem-
perature of 10°C and a gradient 0f 20°C km-1 would predict a temperature of

Temperature = (Gradient x Depth) + Surface temperature
= (20 x 6360) + 10
=127 210°C (2.5)

In fact, the temperature in the Earth’s core is only about 4300°C. Table 2.3
lists the approximate temperature in the Earth, at various depths, based upon
geophysical and geochemical measurements.

The problem is that the temperature near the surface rises much more
rapidly than it does deeper in the Earth, e.g. over 1000 degrees in the first
100 km but only 350 degrees in the following 300 km. Note that the tem-
perature is virtually constant within the inner core (i.e. from 5100 km to the
Earth’s centre). Any attempt to extrapolate down to the core using the large
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Table 2.3 Temperature at various
depths in the Earth as determined from Depth (km) Temperature (°C)
geophysical measurements.

0 10
100 1150
400 1500
700 1900

2800 3700
5100 4300
6360 4300

rate of increase in temperature near the surface is bound to give a ridiculously
large value. A much better approximation is

Temperature = (-8.255 x 10-5)22 + 1.05z + 1110 (2.6)

where z is the depth in kilometres. This equation contains three terms (i.e.
(—8.255 x 10-%)z2, 1.05z and 1110) each of which is calculated separately
before adding them together. Thus, at a depth z=5100 km the temper-
ature is

Temperature = (-8.255 x 10-5 x 5100 x 5100) + (1.05 x 5100) + 1110
=-2147 + 5355+ 1110 =4318°C

which compares well with the value given in Table 2.3. However, at the
Earth’s surface, Eqn. 2.6 predicts

Temperature = (-8.255 x 10~ x 0 x 0) + (1.05 x 0) + 1110
=1110°C

which is certainly not correct. In fact, Eqn. 2.6 is a reasonable approxima-
tion to the Earth’s internal temperature only for depths greater than around
100 km.

Figure 2.6 shows how the temperature variation predicted by Eqn. 2.6
compares with the temperatures given in Table 2.3. Although the fit is not
exact, it is clear that Eqn. 2.6 can be used to calculate an approximate value
for the temperature at any given depth below 100 km. Once again we see that
mathematical descriptions of geological behaviour are useful approxima-
tions rather than exact ‘truths’.

Equation 2.6 is a particular example of a quadratic equation. The general
form is

y=ax2+bx+c (2.7)

where y is a function of x whilst 4, b and ¢ are constants. Figure 2.7 shows a
selection of specific examples of Eqn. 2.7. Open spreadsheet Quadrat.xls to
see, in more detail, how the values of 4, b and ¢ affect the shape of a quadratic
function. Don’t forget to try negative as well as positive values.
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Fig. 2.6 The temperature versus depth data from Table 2.3 compared to a best-fit quadratic
function.

y=—2x’+10x+20

Fig. 2.7 Examples of quadratic functions. Each curve has an equation of the form
y = ax? + bx + c but the values of a, b and c differ between the curves.

Comparing the general equation (Eqn. 2.7) with the temperature profile
function (Eqn. 2.6) we can see that y is equivalent to temperature and x
is equivalent to depth. In addition, the constants a, b and ¢ have the values:
a4 =-8.255 x 10-5; b= 1.05 and ¢ = 1110. The ability to compare a particu-
lar equation to a standard form and pick out the appropriate values for the
constants will be used again in this book, so make sure that you fully under-
stand what has just been done.




Geological variables 27

Question 2.5 If f=2g2-10g + 6
where fand g are variables, write down values for the constants equivalent
toa, band cin Eqn. 2.7.

2.4 Polynomial functions

It is possible to improve further on the fit of a mathematical expression to our
temperature data by using longer expressions. Figure 2.8 compares the
temperature data to the function

Temperature =azt + b3+ cz2 +dz + e (2.8)

with values for the constants of a=-1.12x 10-12, b=2.85x10-8, ¢ =
—0.000 310, d = 1.64 and e = 930. However, whilst the fit to the data is now
much better, particularly between 2000 and 4000 km, the expression itself is
becoming more difficult to evaluate. This trade-off between accuracy and
simplicity is a frequent occurrence when applying mathematics to specific
problems. Note that even this more complex expression does not model the
temperature in the shallowest 100 km.

Question 2.6 Compare the temperature predicted by Eqns. 2.6 and 2.8 at
a depth of 2800 km. How do these results compare with the true value in
Table 2.3?

5000
4500 +
4000 |
~ 3500
&
‘o 3000
2
© 25004
g
E 2000 e Geophysically
< determined
1500+ temperature
1000 4
500 §
0 + + + } ‘
0 1000 2000 3000 4000 5000 6000 7000
Depth (km)

Fig. 2.8 The temperature versus depth data from Table 2.3 compared to a best fit function of
the form Temperature = az* + bz3 + c22 + dz + e where z is depth.
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Expressions like Eqn. 2.8 are known as polynomials (or power series). The
general form for these is

Yy=ag+a; X +ax2 +axd+c+a,xn (2.9)

in which - - indicates a numbér of terms which have not been explicitly
written down. In this expression, a;, 4;, 4, €tc. are constants and #» is an inte-
ger giving the power of the last term. For example, if # =2, the expression
simplifies to the quadratic function

y=ay+ax +ax?
and, if #n = 1, the expression is a straight line function
y=dy+a;x

Thus, straight line functions and quadratic functions are special cases of
polynomial functions. If » = 5, the resulting expression is

Y =ag+a;X +ayx? +azxd +axt +agx’

Spreadsheet Poly.xls allows you to investigate how the shape of this function
depends upon the coefficients a,, 4, etc. Remember that you can set some of
these coefficients to zero, e.g. set 4, a3, 4, and a; all to zero to plot a straight
line.

2.5 Negative powers

Look at Table 2.4 which shows 3 for various values of n. For example,
whenn = 1,37 =31 = 3 and, when n = 2, 37 = 32 = 9. Now, starting at the top
(33 =27), and moving down the table, each successive result is 1/3 of the
result above. For example, 9 is one-third of 27. Continuing this trend down
the table, 30 should be one-third of 31, i.e. 30 = 1. Taking the trend even fur-
ther, 3-1is 1/3 of 1 (i.e. 3-1 = 1/3). A little further thought should convince
you that the more general result is that 3-» = 1/3.,

Table 2.4 The result of raising 3 to the

& 3 power of the integers between —3 and 3.
3 27
2 9
1 3
0 il
-1 1/3
-2 1/9

-3 1/27
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The most general result is that x» divided by x is %#-1. In other words, each
decrease of the power by one is achieved by division by x. This is a special
case of Eqn. 1.5,

xafxb = xa-b ) (1.5)
in which b = 1. Thus, Eqn. 1.5 becomes
xafx = xa-1

Now, x/x = 1.0 since any number divided by itself is 1.0. In addition, from
the discussion above, x/x = x1-1 = x0. Thus, x0 = 1.0. This is a very important
result: any number raised to the power of zero equals one. (The only excep-
tion is 00 = 0.) For example, 20=1,1000=1, (-36.4)0=1andn0 = 1.

This process can be taken a stage further by division of x0 by x to give
x-1, This is the same as dividing 1 by x, i.e. x-1 = 1/x. Further divisions lead to
x-2=1/x2, x-3 =1/x3, etc. In other words, a number raised to a negative
power equals the reciprocal of the same number raised to a positive power.
Thus, (3.5)-9 = 1/(3.5)%, and, in general, x—# = 1/x~.

We are now in a position to see why, in the scientific notation introduced in
Chapter 1, numbers smaller than one are expressed using a negative power of
10. Thus, 0.001 is written as 10-3 because it equals 1/103 (= 1/1000).

2.6 Fractional powers

The last stage in the generalization of the use of powers is to allow the expon-
ent to be a fraction. Table 2.4 and Fig. 2.9 should help to make this idea more

10
3N

9

-2.5 -2 -1.5 -1 ~-0.5 2.5

Fig. 2.9 A smooth curve drawn through the data from Table 2.4. The dashed lines indicate the
point where # = 0.5 from which it can be seen that 312 = 1.7.
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acceptable. In Fig. 2.9 the points corresponding to n=-2, -1, 0, 1 and 2
are plotted as a simple graph which shows that they lie along a smooth curve.
This curve can readily be used at points other than n=-2,-1, 0, 1 or 2. For
example, at # = 0.5 the value on the vertical axis is about 1.7. Similarly, at
n = 1.5 the vertical axis reads approximately 5.2. Thus 30-5 is approximately
1.7 and 315 is about 5.2. A more mathematically formal treatment of this
subject is beyond the scope of this book but the main point to learn here is
that it is not necessary to use integers when raising a number to a power.
Negative fractional exponents are also possible. From Fig. 2.9 it can be seen
that 3-0-5 is around 0.6.

Fractional powers behave in exactly the same way as integer powers. Thus,
they obey the equations given in Chapter 1 for manipulating powers, i.e.

xaxb = xotb (1.4)
xa[xb = xa-b (1.5)
and

(xa)b = xab (1.6)

For example, from Eqn. 1.4, x0.3 X x04 = x0.7

A direct result of this is that some of these fractional powers have a very
simple interpretation. For example, a number raised to the power of 0.5 is the
square root of the number (x1/2 = Vx) since x1/2 x x1/2 = x1, Similarly, a number
raised to the power of one-third results in the cube root (x13 = ;). Figure 2.9
indicated that 3172 is around 1.7; in fact, the square root of 3is 1.732.

Question 2.7 Draw up a table of 57 for n=-2, -1, 0, 1 and 2. Plot the
result. Hence, estimate 1/V5. In fact, this can be done in two ways. First,
estimate it directly from the graph. Secondly, use the graph to estimate S
and then calculate 145, Compare these answers to each other and to the
value given by a calculator.

Iwill finish this section on polynomial functions and their extensions by using
a simple geological example of the use of fractional powers. There are theor-
etical reasons for expecting water depth, d, in the vicinity of a mid-ocean
spreading ridge to depend upon the square root of the distance, x, from the
ridge axis according to

d=d,+ ax12 (2.10)

where a is a constant which will depend upon factors such as the spreading
rate and d,, is the depth of the ridge axis. Figure 2.10 shows a comparison
between the depths predicted by Eqn. 2.10 and the true water depths in the
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Fig.2.10 Occan water depth in the vicinity of the Pacific-Antarctic Ridge. The solid line shows
the predicted depth using Eqn. 2.10.

vicinity of the Pacific-Antarctic spreading ridge assuming a value for d; of
2.3 km and a value for a of 0.08. Thus, at a distance from the ridge axis of
900 km, Eqn. 2.10 predicts a depth of

d=2.3+(0.08 xV900) = 2.3 + (0.08 x 30) = 2.3 + 2.4 = 4.7 km

As you can see on Fig. 2.10, the true water depth is indeed very close to this
value.

2.7 Allometric growth and exponential functions

Polynomial functions (Section 2.4) and their extensions (Sections 2.5 and
2.6) are extremely versatile and can be used to describe many situations.
However, there are situations in which they are not appropriate. The way in
which sediments compact as they are buried is a good example.

Water contained in recently deposited sediments is usually squeezed out as
the sediments are buried. Thus, sediments start with a relatively large poros-
ity and lose this during burial. A particularly simple approximation for the
way in which this happens is to assume that a certain proportion of the water
is expelled for a given amount of burial, In a particular case, half of the water
might be released when the sediment is buried by 1km and half of the
remaining liquid removed during further burial to 2 km. If the sediment
started with a porosity of 0.6 when deposited, the resulting porosity at
various depths would be as shown in Table 2.5.

The important point about this example is that porosity always decreases
with increasing burial but never actually reaches zero. It would be very
difficult to reproduce this using polynomial functions. However, the values in
Table 2.5 could be produced by using
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Table 2.5 Variation in porosity with

Depth (km) Porosity depth assuming an initial porosity of
0.6 which halves for every kilometre of
0 0.6 burial.
1 0.3
2 0.15
3 0.075
4 0.0 375
0=0.6x2= (2.11)

in which ¢ is the porosity at a depth z (note that porosity is nearly always
denoted by the Greek letter ¢). For z = 3 km, 2-2 will be 2-3 = 1/8 and there-
fore ¢ becomes 0.6 x 1/8 = 0.075 as shown in Table 2.5.

Question 2.8 What porosity does Eqn. 2.11 give at a depth of 2 km?

Now, whilst Eqn. 2.11 is similar to those discussed in Section 2.6, the crucial
difference is that the variable, z, appears as the exponent in this expression,
i.e. the power used varies as z varies. Compare this to Eqn. 2.10 in which the
variable, x, is raised to the fixed power 0.5. This subtle difference produces a
rather different type of function. Its general form could be expressed as

y =abex (2.12)

where y is a function of x whilst 4, b and ¢ are constants. Equations such as
this are called either allometric growth laws or exponential functions. This
equation does not actually need three separate constants since b¢ is itself just
another constant (be = d say) which means that only two independent con-
stants are needed for the general form of this equation. There are two ways of
achieving this. First, simply use b¢ = d and write Eqn. 2.12 in the form

y = ads (2.13)

which has two constants 2 and d. Alternatively, the constant b in Eqn. 2.12 is
fixed to be a particular, convenient, value and c is retained as an independent
constant. For example, b = 10 may be simple to use in some contexts leading
to expressions like

y=ax 10 (2.14)

The choice of value to use for b is entirely arbitrary and can be varied
to suit the problem. However, 99% of the time a rather peculiar choice for
b is made. Normally the value b = 2.718 is used! This number, denoted by
the letter e, is special for reasons which will be touched upon in Chapter 8.
For now, it is sufficient to know that it is a very important number in
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mathematics. It is similar to the number 7 in that it is irrational (i.e. it cannoy
be expressed exactly as a fraction and, in decimal form, the number goes
on for ever); it crops up in many different branches of mathematics and the
use of e to denote this number is sufficiently universal that it will not, norm-
ally, be defined in most papers or books. Thus, another important form for
Eqn.2.12is

y=a e (2.15)
in which e = 2.718. An alternative way of writing this is
Yy = a exp{cx) (2.16)

which means exactly the same thing as Eqn. 2.15. (N.B. ‘exp’ here is a
single word, it does not mean e times p. In fact, ‘exp’ is an abbreviation for
exponential.)

Spreadsheet Exp.xls allows you to plot Eqn. 2.12 for any value of ¢, b or c.
In particular, if ¢ is set to 1 then it models Eqn. 2.13 and, if b is set to 10 then
it will plot Eqn. 2.14 for you. To get a standard exponential function (i.e.
Eqn. 2.15) you should set b to 2.718 or, alternatively, type the formula
=exp(1) into cell B9,

Equation 2.15 is frequently the form used for modelling the variation in
porosity with depth. This leads to expressions such as

0= ye-2h (2.17)

An example is the best way to illustrate this. If the constants have the values
¢9=0.7, A = 2 km, the porosity at a depth of 4 km would be

¢ =0.7 exp(—4/2)
=0.7 exp(-2)
=0.7x0.135
=0.0945

Question 2.9 What porosity would this predict for z = 1 km?

It is worth spending a little time considering the meaning of the constants ¢,
and A. These do have fairly simple interpretations. First, remember that any
number to the power zero equals one. Thus, if the depth is zero, Eqn. 2.17

becomes

0= 6y exp(-0/A)
=0, exp(0)
=0, x 1.0

=¢0
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In other words, ¢, is simply the porosity at zero depth. The meaning of A can
be seen by setting z to be A kilometres. Equation 2.17 then gives

¢ = ¢g exp(=A/A)
= ¢ exp(-1)
=Gole
= /2.71

i.e. A is the depth at which the porosity reduces to around one-third of its
starting value.

2.8 Logarithms

The logarithmic function is the final type of relationship which will be invest-
igated in this chapter. Logarithms solve the problem of how to rearrange
equations of the form y = a= (i.e. exponential or allometric growth functions,
Section 2.7) into an equation for x in terms of y. The solution is x = log,(y).
In other words, logarithms are defined as the inverse of exponential func-
tions. For example, if y=103=1000, then log,,(1000)=3. Similarly,
log,,(100 000) = S since 100 000 = 105. Tables 2.6 and 2.7 make the same
point in a slightly different way. Table 2.6 lists the result of raising 10 to the
power of various integers, i.e. 107 = 100 if # = 2 etc. The definition given for
logarithms above, implies that Table 2.6 could be rewritten as a table of
logarithms simply by swapping around the columns (i.e. Table 2.7).

Table 2.6 Ten raised the power of the

i 10 integers between -2 and 3.
-2 0.01
-1 0.1

0 1

1 10

2 100

3 1000

Table 2.7 Table of logarithms produced

Number Logarithm by swapping the columns in Table 2.6.
0.01 -2
0.1 -1
1 0
10 1
100 2
1000 3
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Fig. 2.11 The graph at top left shows the curve y = 107 using the data from Table 2.6. The
graph at bottom left shows the curve y = log(x) using the data from Table 2.7. This figure shows
that the two curves are exactly the same shape since the two functions are very closely related.

Figure 2.11 makes the same point in yet another way. The top left-hand
graph shows a graph of 107 versus 7 whilst the graph at lower left is of
log,y(x) versus x. However, as Fig. 2.11 attempts to make clear, these two
functions are very closely related since the two graphs show the same curve
just plotted in a different orientation.

Another important point about Fig. 2.11 is that the logarithmic curve
never crosses the vertical axis. If this curve was plotted for smaller values of
x it would get even steeper and it would never reach the log,,(x) axis. As a
consequence, logarithms of negative numbers do not exist. If you try to use a
calculator, for example to find log,,(~2), you will get an error message.
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Table 2.8 Number of faults of length

Fault length (m) Number greater than a given size at a particular
— outcrop. For example there are 11 faults
0.001 10 109 of length 1 m or longer.
0.01 957
0.1 132
1 11
10 1
12 000
10 000 %
8000
%
£ 6000
3
z
m Data
4000 points
2000
0 ¥ —i—
0 2 4 6 8 10 12

Fault length (m)
Fig.2.12 A simple graph of the data from Table 2.8.

There are three main uses for logarithms.

1 Rearranging equations containing exponential functions as discussed
above.

2 Reducing exponential and allometric functions to simple straight lines.

3 Compressing large data ranges.

The first two of these are closely related and will be covered in more detail
in the next chapter. What about the third use, i.e. compressing large ranges?
Fault sizes provide a good example. Faults occur on a vast range of scales
from millimetres long to hundreds of kilometres long. Now, in a particular
area, the number of faults of different sizes might be something like Table 2.8
in which the fault length is tabulated against the number of faults observed of
this size or larger. Note that such tables typically show that small faults are
much more common than larger faults. If we attempt to plot these data on a
graph, the result is as shown in Fig. 2.12.

This graph is not very helpful because all the points lie on or near the axes.
The problem is the large range of values that occurs; some values are very
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Table 2.9 Result of taking logarithms of the data in Table 2.8.

Fault length (m) log(length) Number log(number)
0.001 -3 . 10 109 4.00
0.01 -2 957 2.98
0.1 -1 132 2,12
1 0 11 1.04
10 1 1 0.00
5
= 4
m 3t &
Q
E
=}
=
] 5 g
B Data 1"
points
e " 0 B
-35 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5
log(length)

Fig. 2.13 Graph of the logarithm data from Table 2.9.

small whilst some are very large. This makes it impossible to find axes
scales which enable all the data to be properly viewed. However, if we add
logarithms to the columns in Table 2.8 (to give Table 2.9) and plot these
instead, Fig. 2.13 results. Clearly, this graph is much more informative since
the data are now spread more evenly across it.

Thus, in summary, a major use for logarithms is for plotting graphs of
quantities which vary over large ranges. This is something which occurs very
frequently in geological problems.

2.9 Logarithms to other bases

The previous section explained how logarithms were obtained from a table
showing the number 10 raised to various powers. However, it is not neces-
sary for the number 10 to be used. If other numbers are used then the result is
alogarithm in a different base. An alternative choice might be, for example, a
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Table 2.10 The result of raising 6 to

L 6" the power of various integers and the
resulting table of logarithms obtained
-2 1/62=1/36 = 0.0278 by swapping the columns around.
-1 1/61=1/6 =0.167
0 60=1
il 61=6
2 62=36
Hence:
x logg(x)
0.0278 -2
0.167 -1
1 0
6 1
36 2

base of 6. Table 2.10 shows the number 6 raised to the power of various
integers and the resulting table of logarithms obtained by swapping the
columns around.

Note that, in order to indicate that these are logarithms to base 6, a 6
subscript is written after the word ‘log’. Logarithms to base 10, i.e. those
discussed in section 2.8, are frequently written without this subscript so that,
if the subscript is missing, logs to base 10 should be understood. Logarithms
to base 10 are sometimes called common logarithms.

Question 2.10 What number has a logarithm, in base 5, of 2 (i.e. if
logg(x) = 2, what is x)? Hint: Construct a table similar to Table 2.10 but
for a base of 5.

A commonly used scale for quantifying sediment grain sizes is called the phi
scale and this uses logarithms to base 2. The formal definition of the phi grain
size is

¢ = —log,(d) (2.18)

where d is the grain size in millimetres. This is not as complex as it sounds as a
table of base 2 logarithms shows (Table 2.11).

To convert phi values into grain sizes in millimetres it is only necessary to
start at 1 mm and halve this ¢ times (e.g. for ¢ = 3, halving 1.0 mm three
times gives a grain size of 1/8 mm). A convention that halving a negative
number of times means doubling the same number of times must also be used
(e.g. for ¢ =—3, doubling 1.0 mm three times gives a grain size of 8 mm).
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Table 2,11 Logarithms to base 2. Note
that the log increases by one for each s log,(x)
doubling of x and log,(1) = 0.

0.25 -2
0.5 -1
il 0
2 il
4 2
8 3

However, for grain sizes which are not an integer power of 2 (0.25, 0.5, 1, 2,
4,8 mm, etc., are all integer powers of 2) this procedure will not work and the
formula given by Eqn. 2.18 must be used. Many calculators allow you to
do this directly but, if you do not have access to such a calculator, there is a
simple recipe for converting between logarithm bases:

_log (a)

log,(a)= — (2.19)

Converting a logarithm to the base 2 into a common logarithm should make
this clearer. If b = 2 and ¢ = 10, Eqn. 2.19 becomes

_ log,,(a)
log,,(2)
= 3.32 log,,(a) (2.20)

0g,(a) =log,,(4)/0.301

i.e. use the common logarithm and then multiply by 3.32. So, a grain size of
2.3 mm would have a phi value given by

¢ =-log,(2.3)
-3.32 log,,(2.3)
-3.32x0.362
=-1.20.

To finish this chapter I'll discuss a particularly common base for logarithms,
namely logarithms to base e (remember e = 2.718). These are known as nat-
ural logarithms and are denoted either by using the subscript ¢ (natural log of
x is written log,(x)) or, more commonly, it is denoted by In (i.e. natural log of
x 1s written In(x) ). This type of logarithm probably occurs more frequently
than any other, and will be used throughout this book, so it is important to be
familiar with its appearance.

Spreadsheet Log.xIs allows you to plot the common logarithm function,
the natural logarithm function and a logarithm function assuming a user-
defined base. Using this, for example, you can investigate the log, function.
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2.10 Further questions

2.11 The following data were taken from the Troll 3.1 well in the
Norwegian North Sea.

Depth (cm) Age (years)
19.75 1490
407.0 10 510
545.0 11 160
825.0 11 730
1158.0 12 410
1454.0 12 585
2060.0 13 445
2263.0 14 685

By plotting a graph of these data, estimate:

(i) the sedimentation rate for the last 10 000 years;

(i) the sedimentation rate for the preceding 5000 years;

(iii) the time since sedimentation ceased.

(Data taken from Lehman, S. and Keigwin, L. (1992) Sudden changes in
North Atlantic circulation during the last deglaciation. Nature, 356,757-62.)

2.12 As crystals settle out of magmas, element concentrations, C, in the
remaining liquid change according to the equation

C = C,FD-1)

where C, is the concentration of the element in the liquid before crystalliza-
tion began, F s the fraction of liquid remaining and D is a constant (known as
the distribution coefficient). Calculate the concentration of an element after
50% crystallization (i.e. F = 0.5) if its initial concentration was 200 ppm and
D =6.5.

2.13 Radioactive minerals become less active with time according to the
equation

In(a) = In(a,) — Mt

where a is the radioactivity, 4, is the initial radioactivity, ¢ is time and L is a
constant which depends upon the mineral. If ;= 1000 counts per second
and A = 10-7 y-1, draw up a table and plot a graph of In(a) against ¢ for times
ranging from 0 to 100 My. From your graph, estimate the age of a specimen
which has decayed to a = 100 counts per second.
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2.14 The variation in gravitational strength with altitude should obey the
equation

g=gy+ah

where g is the measured strength of gravity, 8, is the gravitational strength at
sea level, g is a constant and 4 is height above sea level. However, the presence
of metallic ore bodies, volcanic intrusions, etc., tend to increase the local
strength of gravity slightly. Thus, real gravitational measurements do not
quite obey this expression. Deviations from this equation can therefore be
used to indicate the presence of such features. Using the figures given below,
plot a graph of g against » and hence estimate 8o and a. Hence, calculate the
deviation of each measurement from its expected value. Plot a graph of this
deviation as a function of position and determine the approximate extent of
an ore body known to outcrop in this area.

Horizontal position, x Altitude, b Gravity, g
(km) (m) (ms2)
0.0 150 9.80 945
0.5 100 9.8097
1.0 170 9.80 949
1.5 200 9.8 094
2.0 150 9.80 955
2.5 130 9.80 951
3.0 120 9.80 954

2.15 The rate of accumulation, p, of carbonate sediments on a reef is given
approximately by

P = Do exp(~2/Z)

where p, and Z are constants and z is depth below sea level.

(i) Calculate p at depthsof0,2,4,...,20 m ifp,=3mky-land Z =20 m.
Sketch the results.

(if) Give an interpretation for the constants poand Z.




